References

  • Aumont, O.; Ethé, C.; Tagliabue, A.; Bopp, L. and Gehlen, M. (2015). PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Development 8, 2465–2513.
  • Broch, O. J.; Alver, M. O.; Bekkby, T.; Gundersen, H.; Forbord, S.; Handå, A.; Skjermo, J. and Hancke, K. (2019). The kelp cultivation potential in coastal and offshore regions of Norway. Frontiers in Marine Science 5.
  • Broch, O. J.; Ellingsen, I. H.; Forbord, S.; Wang, X.; Volent, Z.; Alver, M. O.; Handå, A.; Andresen, K.; Slagstad, D.; Reitan, K. I.; Olsen, Y. and Skjermo, J. (2013). Modelling the cultivation and bioremediation potential of the kelp Saccharina latissima in close proximity to an exposed salmon farm in Norway. Aquaculture Environment Interactions 4, 187–206.
  • Broch, O. J. and Slagstad, D. (2012). Modelling seasonal growth and composition of the kelp Saccharina latissima. Journal of Applied Phycology 24, 759–776.
  • Chen, M.; Fan, M.; Liu, R.; Wang, X.; Yuan, X. and Zhu, H. (2015). The dynamics of temperature and light on the growth of phytoplankton. Journal of Theoretical Biology 385, 8–19.
  • Dunne, J. P.; Sarmiento, J. L. and Gnanadesikan, A. (2007). A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochemical Cycles 21.
  • Fossberg, J.; Forbord, S.; Broch, O. J.; Malzahn, A. M.; Jansen, H.; Handå, A.; Førde, H.; Bergvik, M.; Fleddum, A. L.; Skjermo, J. and Olsen, Y. (2018). The potential for upscaling kelp (Saccharina latissima) cultivation in salmon-driven integrated multi-trophic aquaculture (IMTA). Frontiers in Marine Science 9.
  • Karleskind, P.; Lévy, M. and Memery, L. (2011). Subduction of carbon, nitrogen, and oxygen in the northeast Atlantic. Journal of Geophysical Research: Oceans 116.
  • Kuhn, A. M.; Fennel, K. and Mattern, J. P. (2015). Model investigations of the North Atlantic spring bloom initiation. Progress in Oceanography 138, 176–193.
  • Lévy, M.; Gavart, M.; Mémery, L.; Caniaux, G. and Paci, A. (2005). A four-dimensional mesoscale map of the spring bloom in the northeast Atlantic (POMME experiment): Results of a prognostic model. Journal of Geophysical Research C: Oceans 110, 1–23.
  • Lévy, M.; Klein, P. and Treguier, A.-M. (2001). Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. Journal of Marine Research 59, 535–565.
  • MacAladay, J. (1998). Environmental Chemistry, Eighth Edition (Oxford University Press); pp. 271–291.
  • Morel, A. (1988). Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). Journal of Geophysical Research 93, 10749.
  • Resplandy, L.; Lévy, M.; D'Ovidio, F. and Merlivat, L. (2009). Impact of submesoscale variability in estimating the air-sea CO2 exchange: Results from a model study of the POMME experiment. Global Biogeochemical Cycles 23.
  • Resplandy, L.; Martin, A. P.; Moigne, F. L.; Martin, P.; Aquilina, A.; Mémery, L.; Lévy, M. and Sanders, R. (2012). How does dynamical spatial variability impact 234Th-derived estimates of organic export? Deep-Sea Research Part I: Oceanographic Research Papers 68, 24–45.
  • Soetaert, K.; Middelburg, J. J.; Herman, P. M. and Buis, K. (2000). On the coupling of benthic and pelagic biogeochemical models. Earth-Science Reviews 51, 173–201.
  • Strong-Wright, J. and Taylor, J. (2022). Modeling the Growth Potential of the Kelp Saccharina Latissima in the North Atlantic. Frontiers in Marine Science 8.
  • Taylor, J. R. (2016). Turbulent mixing, restratification, and phytoplankton growth at a submesoscale eddy. Geophysical Research Letters 43, 5784–5792.
  • Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382.