Library

Documenting the user interface.

OceanBioME.jl

OceanBioME.OceanBioMEModule

A fast and flexible modelling environment for modelling the coupled interactions between ocean biogeochemistry, carbonate chemistry, and physics.

source
OceanBioME.BiogeochemistryMethod
Biogeochemistry(underlying_biogeochemistry;
                light_attenuation = nothing,
                sediment = nothing,
                particles = nothing,
                modifiers = nothing)

Construct a biogeochemical model based on underlying_biogeochemistry which may have a light_attenuation model, sediment, particles, and modifiers.

Keyword Arguments

  • light_attenuation_model: light attenuation model which integrated the attenuation of available light
  • sediment_model: slot for AbstractSediment
  • particles: slot for BiogeochemicalParticles
  • modifiers: slot for components which modify the biogeochemistry when the tendencies have been calculated or when the state is updated
source
OceanBioME.ScaleNegativeTracersMethod
ScaleNegativeTracers(; tracers, scalefactors = ones(length(tracers)), warn = false, invalid_fill_value = NaN)

Constructs a modifier to scale tracers so that none are negative. Use like:

modifier = ScaleNegativeTracers((:P, :Z, :N))
biogeochemistry = Biogeochemistry(...; modifier)

This method is better, though still imperfect, method to prevent numerical errors that lead to negative tracer values compared to ZeroNegativeTracers. Please see discussion in github.

Future plans include implement a positivity-preserving timestepping scheme as the ideal alternative.

~~If warn is true then scaling will raise a warning.~~

invalid_fill_value specifies the value to set the total cell content to if the total is less than 0 (meaning that total tracer conservation can not be enforced). If the value is set to anything other than NaN this scheme no longer conserves mass. While this may be useful to prevent spurious numerics leading to crashing care should be taken that the mass doesn't deviate too much.

This scheme is similar to that used by NEMO-PISCES, although they scale the tendency rather than the value, while other Earth system models simply set negative tracers to zero, for example NCAR's MARBL and NEMO-TOPAZ2, which does not conserve mass. More complicated schemes exist, for example ROMS-BECS uses an implicite-itterative approach where each component is updated in sequence to garantee mass conservation, possibly at the expense of numerical precision.

source
OceanBioME.ScaleNegativeTracersMethod
ScaleNegativeTracers(model::UnderlyingBiogeochemicalModel; warn = false)

Construct a modifier to scale the conserved tracers in model.

If warn is true then scaling will raise a warning.

source
OceanBioME.ZeroNegativeTracersType
ZeroNegativeTracers(; exclude = ())

Construct a modifier that zeroes any negative tracers excluding those listed in exclude.

Tracer conservation

This method is not recommended as a way to preserve positivity of tracers since it does not conserve the total tracer.

source
OceanBioME.redfieldMethod
redfield(i, j, k, val_tracer_name, bgc, tracers)

Returns the redfield ratio of tracer_name from bgc at i, j, k.

source
OceanBioME.redfieldMethod
redfield(val_tracer_name, bgc)
redfield(val_tracer_name, bgc, tracers)

Returns the redfield ratio of tracer_name from bgc when it is constant across the domain.

source

Biogeochemical Models

Nutrient Phytoplankton Zooplankton Detritus

OceanBioME.Models.NPZDModelModule

Nutrient-Phytoplankton-Zooplankton-Detritus model of Kuhn et al. (2015).

Tracers

  • Nutrients: N (mmol N/m³)
  • Phytoplankton: P (mmol N/m³)
  • Zooplankton: Z (mmol N/m³)
  • Detritus: D (mmol N/m³)

Required submodels

  • Photosynthetically available radiation: PAR (W/m²)
source
OceanBioME.Models.NPZDModel.NutrientPhytoplanktonZooplanktonDetritusMethod
NutrientPhytoplanktonZooplanktonDetritus(; grid,
                                           initial_photosynthetic_slope::FT = 0.1953 / day, # 1/(W/m²)/s
                                           base_maximum_growth::FT = 0.6989 / day, # 1/s
                                           nutrient_half_saturation::FT = 2.3868, # mmol N/m³
                                           base_respiration_rate::FT = 0.066 / day, # 1/s/(mmol N / m³)
                                           phyto_base_mortality_rate::FT = 0.0101 / day, # 1/s/(mmol N / m³)
                                           maximum_grazing_rate::FT = 2.1522 / day, # 1/s
                                           grazing_half_saturation::FT = 0.5573, # mmol N/m³
                                           assimulation_efficiency::FT = 0.9116, 
                                           base_excretion_rate::FT = 0.0102 / day, # 1/s/(mmol N / m³)
                                           zoo_base_mortality_rate::FT = 0.3395 / day, # 1/s/(mmol N / m³)²
                                           remineralization_rate::FT = 0.1213 / day, # 1/s

                                           surface_photosynthetically_active_radiation = default_surface_PAR,
                                           light_attenuation_model::LA =
                                               TwoBandPhotosyntheticallyActiveRadiation(; grid,
                                                                                          surface_PAR = surface_photosynthetically_active_radiation),
                                           sediment_model::S = nothing,
            
                                           sinking_speeds = (P = 0.2551/day, D = 2.7489/day),
                                           open_bottom::Bool = true,

                                           scale_negatives = false,
                                                                                  
                                           particles::P = nothing,
                                           modifiers::M = nothing)

Construct a Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) biogeochemical model.

Keyword Arguments

  • grid: (required) the geometry to build the model on, required to calculate sinking
  • initial_photosynthetic_slope, ..., remineralization_rate: NPZD parameter values
  • surface_photosynthetically_active_radiation: function (or array in the future) for the photosynthetically available radiation at the surface, should be shape f(x, y, t)
  • light_attenuation_model: light attenuation model which integrated the attenuation of available light
  • sediment_model: slot for AbstractSediment
  • sinking_speed: named tuple of constant sinking, of fields (i.e. ZFaceField(...)) for any tracers which sink (convention is that a sinking speed is positive, but a field will need to follow the usual down being negative)
  • open_bottom: should the sinking velocity be smoothly brought to zero at the bottom to prevent the tracers leaving the domain
  • scale_negatives: scale negative tracers?
  • particles: slot for BiogeochemicalParticles
  • modifiers: slot for components which modify the biogeochemistry when the tendencies have been calculated or when the state is updated

Example

julia> using OceanBioME

julia> using Oceananigans

julia> grid = RectilinearGrid(size=(20, 30), extent=(200, 200), topology=(Bounded, Flat, Bounded));

julia> model = NutrientPhytoplanktonZooplanktonDetritus(; grid)
NutrientPhytoplanktonZooplanktonDetritus{Float64} model, with (:P, :D) sinking 
 Light attenuation: Two-band light attenuation model (Float64)
 Sediment: Nothing
 Particles: Nothing
 Modifiers: Nothing
source

The Lodyc-DAMTP Ocean Biogeochemical Simulation Tools for Ecosystem and Resources (LOBSTER)

OceanBioME.Models.LOBSTERModelModule

The Lodyc-DAMTP Ocean Biogeochemical Simulation Tools for Ecosystem and Resources (LOBSTER) model.

Tracers

  • Nitrates: NO₃ (mmol N/m³)
  • Ammonia: NH₄ (mmol N/m³)
  • Phytoplankton: P (mmol N/m³)
  • Zooplankton: Z (mmol N/m³)
  • Small (slow sinking) particulate organic matter: sPOM (mmol N/m³)
  • Large (fast sinking) particulate organic matter: bPOM (mmol N/m³)
  • Dissolved organic matter: DOM (mmol N/m³)

Optional tracers

Carbonate chemistry

  • Dissolved inorganic carbon: DIC (mmol C/m³)
  • Alkalinity: Alk (meq/m³)

Oxygen chemistry

  • Oxygen: O₂ (mmol O₂/m³)

Variable redfield

  • Small (slow sinking) particulate organic matter carbon content: sPOC (mmol C/m³)
  • Large (fast sinking) particulate organic matter carbon content: bPOC (mmol C/m³)
  • Dissolved organic matter carbon content: DOC (mmol C/m³)
  • When this option is enabled then the usual sPOM and bPOM change to sPON and bPON as they explicitly represent the nitrogen contained in the particulate matter

Required submodels

  • Photosynthetically available radiation: PAR (W/m²)

For optional tracers:

  • Temperature: T (ᵒC)
  • Salinity: S (‰)
source
OceanBioME.Models.LOBSTERModel.LOBSTERMethod
LOBSTER(; grid,
          phytoplankton_preference::FT = 0.5,
          maximum_grazing_rate::FT = 9.26e-6, # 1/s
          grazing_half_saturation::FT = 1.0, # mmol N/m³
          light_half_saturation::FT = 33.0, # W/m² (?)
          nitrate_ammonia_inhibition::FT = 3.0,
          nitrate_half_saturation::FT = 0.7, # mmol N/m³
          ammonia_half_saturation::FT = 0.001, # mmol N/m³
          maximum_phytoplankton_growthrate::FT = 1.21e-5, # 1/s
          zooplankton_assimilation_fraction::FT = 0.7,
          zooplankton_mortality::FT = 2.31e-6, # 1/s/mmol N/m³
          zooplankton_excretion_rate::FT = 5.8e-7, # 1/s
          phytoplankton_mortality::FT = 5.8e-7, # 1/s
          small_detritus_remineralisation_rate::FT = 5.88e-7, # 1/s
          large_detritus_remineralisation_rate::FT = 5.88e-7, # 1/s
          phytoplankton_exudation_fraction::FT = 0.05,
          nitrification_rate::FT = 5.8e-7, # 1/s
          ammonia_fraction_of_exudate::FT = 0.75, 
          ammonia_fraction_of_excriment::FT = 0.5,
          ammonia_fraction_of_detritus::FT = 0.0,
          phytoplankton_redfield::FT = 6.56, # mol C/mol N
          organic_redfield::FT = 6.56, # mol C/mol N
          phytoplankton_chlorophyll_ratio::FT = 1.31, # g Chl/mol N
          organic_carbon_calcate_ratio::FT = 0.1, # mol CaCO₃/mol C
          respiration_oxygen_nitrogen_ratio::FT = 10.75, # mol O/molN
          nitrification_oxygen_nitrogen_ratio::FT = 2.0, # mol O/molN
          slow_sinking_mortality_fraction::FT = 0.5, 
          fast_sinking_mortality_fraction::FT = 0.5,
          dissolved_organic_breakdown_rate::FT = 3.86e-7, # 1/s
          zooplankton_calcite_dissolution::FT = 0.3,

          surface_photosynthetically_active_radiation = default_surface_PAR,

          light_attenuation_model::LA =
              TwoBandPhotosyntheticallyActiveRadiation(; grid, 
                                                         surface_PAR = surface_photosynthetically_active_radiation),
          sediment_model::S = nothing,

          carbonates::Bool = false,
          oxygen::Bool = false,
          variable_redfield::Bool = false,

          sinking_speeds = (sPOM = 3.47e-5, bPOM = 200/day),
          open_bottom::Bool = true,

          scale_negatives = false,

          particles::P = nothing,
          modifiers::M = nothing)

Construct an instance of the LOBSTER biogeochemical model.

Keyword Arguments

  • grid: (required) the geometry to build the model on, required to calculate sinking
  • phytoplankton_preference, ..., dissolved_organic_breakdown_rate: LOBSTER parameter values
  • surface_photosynthetically_active_radiation: funciton (or array in the future) for the photosynthetically available radiation at the surface, should be shape f(x, y, t)
  • light_attenuation_model: light attenuation model which integrated the attenuation of available light
  • sediment_model: slot for AbstractSediment
  • carbonates, oxygen, and variable_redfield: include models for carbonate chemistry and/or oxygen chemistry and/or variable redfield ratio dissolved and particulate organic matter
  • sinking_speed: named tuple of constant sinking, of fields (i.e. ZFaceField(...)) for any tracers which sink (convention is that a sinking speed is positive, but a field will need to follow the usual down being negative)
  • open_bottom: should the sinking velocity be smoothly brought to zero at the bottom to prevent the tracers leaving the domain
  • scale_negatives: scale negative tracers?
  • particles: slot for BiogeochemicalParticles
  • modifiers: slot for components which modify the biogeochemistry when the tendencies have been calculated or when the state is updated

Example

julia> using OceanBioME

julia> using Oceananigans

julia> grid = RectilinearGrid(size=(3, 3, 30), extent=(10, 10, 200));

julia> model = LOBSTER(; grid)
LOBSTER{Float64} with carbonates ❌, oxygen ❌, variable Redfield ratio ❌ and (:sPOM, :bPOM) sinking 
 Light attenuation: Two-band light attenuation model (Float64)
 Sediment: Nothing
 Particles: Nothing
 Modifiers: Nothing
source

Sugar kelp (Saccharina latissima)

OceanBioME.Models.SLatissimaModel.SLatissimaType
SLatissima(; architecture :: AR = CPU(),
             growth_rate_adjustment :: FT = 4.5,
             photosynthetic_efficiency :: FT = 4.15e-5 * 24 * 10^6 / (24 * 60 * 60),
             minimum_carbon_reserve :: FT = 0.01,
             structural_carbon :: FT = 0.2,
             exudation :: FT = 0.5,
             erosion :: FT = 0.22,
             saturation_irradiance :: FT = 90 * day/ (10 ^ 6),
             structural_dry_weight_per_area :: FT = 0.5,
             structural_dry_to_wet_weight :: FT = 0.0785,
             carbon_reserve_per_carbon :: FT = 2.1213,
             nitrogen_reserve_per_nitrogen :: FT = 2.72,
             minimum_nitrogen_reserve :: FT = 0.0126,
             maximum_nitrogen_reserve :: FT = 0.0216,
             growth_adjustment_2 :: FT = 0.039 / (2 * (1 - minimum_nitrogen_reserve / maximum_nitrogen_reserve)),
             growth_adjustment_1 :: FT = 0.18 / (2 * (1 - minimum_nitrogen_reserve / maximum_nitrogen_reserve)) - growth_adjustment_2,
             maximum_specific_growth_rate :: FT = 0.18,
             structural_nitrogen :: FT = 0.0146,
             photosynthesis_at_ref_temp_1 :: FT = 1.22e-3 * 24,
             photosynthesis_at_ref_temp_2 :: FT = 1.3e-3 * 24,
             photosynthesis_ref_temp_1 :: FT = 285.0,
             photosynthesis_ref_temp_2 :: FT = 288.0,
             photoperiod_1 :: FT = 0.85,
             photoperiod_2 :: FT = 0.3,
             respiration_at_ref_temp_1 :: FT = 2.785e-4 * 24,
             respiration_at_ref_temp_2 :: FT = 5.429e-4 * 24,
             respiration_ref_temp_1 :: FT = 285.0,
             respiration_ref_temp_2 :: FT = 290.0,
             photosynthesis_arrhenius_temp :: FT = (1 / photosynthesis_ref_temp_1 - 1 / photosynthesis_ref_temp_2) ^ -1 * log(photosynthesis_at_ref_temp_2 / photosynthesis_at_ref_temp_1),
             photosynthesis_low_temp :: FT = 271.0,
             photosynthesis_high_temp :: FT = 296.0,
             photosynthesis_high_arrhenius_temp :: FT = 1414.87,
             photosynthesis_low_arrhenius_temp :: FT = 4547.89,
             respiration_arrhenius_temp :: FT = (1 / respiration_ref_temp_1 - 1 / respiration_ref_temp_2) ^ -1 * log(respiration_at_ref_temp_2 / respiration_at_ref_temp_1),
             current_speed_for_0p65_uptake :: FT = 0.03,
             nitrate_half_saturation :: FT = 4.0,
             ammonia_half_saturation :: FT = 1.3,
             maximum_nitrate_uptake :: FT = 10 * structural_dry_weight_per_area * 24 * 14 / (10^6),
             maximum_ammonia_uptake :: FT = 12 * structural_dry_weight_per_area * 24 * 14 / (10^6),
             current_1 :: FT = 0.72,
             current_2 :: FT = 0.28,
             current_3 :: FT = 0.045,
             respiration_reference_A :: FT = 1.11e-4 * 24,
             respiration_reference_B :: FT = 5.57e-5 * 24,
             exudation_redfield_ratio :: FT = Inf,

             prescribed_velocity :: U = 0.1,

             #position
             x :: P = on_architecture(architecture, [0.0])
             y :: P = on_architecture(architecture, zeros(Float64, length(x))),
             z :: P = on_architecture(architecture, zeros(Float64, length(x))),

             #properties
             A :: P = on_architecture(architecture, ones(Float64, length(x)) * 30),
             N :: P = on_architecture(architecture, ones(Float64, length(x)) * 0.01),
             C :: P = on_architecture(architecture, ones(Float64, length(x)) * 0.1),

             #feedback
             nitrate_uptake :: P = on_architecture(architecture, zeros(Float64, length(x))),
             ammonia_uptake :: P = on_architecture(architecture, zeros(Float64, length(x))),
             primary_production :: P = on_architecture(architecture, zeros(Float64, length(x))),
             frond_exudation :: P = on_architecture(architecture, zeros(Float64, length(x))),
             nitrogen_erosion :: P = on_architecture(architecture, zeros(Float64, length(x))),
             carbon_erosion :: P = on_architecture(architecture, zeros(Float64, length(x))),

             custom_dynamics :: F = no_dynamics,

             scalefactor :: FT = 1.0,
             latitude :: FT = 57.5)

Keyword Arguments

  • architecture: the architecture to adapt arrays to
  • growth_rate_adjustment, ..., exudation_redfield_ratio: parameter values
  • prescribed_velocity: functions for the relative velocity f(x, y, z, t)
  • x,y and z: positions of the particles
  • A, N, and C: area, nitrogen, and carbon reserves
  • nitrate_uptake ... carbon_erosion: diagnostic values coupled to tracer fields
  • custom_dynamics: place to add any function of form f!(particles, model, bgc, Δt)
  • scalefactor: scalar scaling for tracer coupling
  • latitude: model latitude for seasonal growth modulation
source

Carbon Chemistry

OceanBioME.Models.CarbonChemistryModel.CarbonChemistryType
CarbonChemistry(; ionic_strength = IonicStrength(),
                  solubility = K0(),
                  carbonic_acid = (K1 = K1(), K2 = K2()),
                  boric_acid = KB(),
                  water = KW(),
                  sulfate = KS(; ionic_strength),
                  fluoride = KF(; ionic_strength),
                  phosphoric_acid = (KP1 = KP1(), KP2 = KP2(), KP3 = KP3()),
                  silicic_acid = KSi(; ionic_strength),
                  calcite_solubility = KSP_calcite(),
                  density_function = teos10_polynomial_approximation)

Carbon chemistry model capable of solving for sea water pCO₂ from DIC and total alkalinity or DIC and pH.

Default form from Dickson, A.G., Sabine, C.L. and Christian, J.R. (2007), Guide to Best Practices for Ocean CO 2 Measurements. PICES Special Publication 3, 191 pp.

See each parameters documentation for origional sources.

Example

julia> using OceanBioME

julia> carbon_chemistry = CarbonChemistry()
`CarbonChemistry` model which solves for pCO₂ and pH

julia> pCO₂ = carbon_chemistry(; DIC = 2000, Alk = 2000, T = 10, S = 35)
1308.0843992121615

julia> pH = carbon_chemistry(; DIC = 2000, Alk = 2000, T = 10, S = 35, return_pH = true)
7.502534641304366

julia> pCO₂_higher_pH = carbon_chemistry(; DIC = 2000, T = 10, S = 35, pH = 7.5)
1315.6558976217746
source
OceanBioME.Models.CarbonChemistryModel.CarbonChemistryMethod
(p::CarbonChemistry)(; DIC, T, S, Alk = 0, pH = nothing,
                       return_pH = false,
                       boron = 0.000232 / 10.811 * S / 1.80655,
                       sulfate = 0.14 / 96.06 * S / 1.80655,
                       fluoride = 0.000067 / 18.9984 * S / 1.80655,
                       silicate = 0,
                       phosphate = 0,
                       upper_pH_bound = 14,
                       lower_pH_bound = 0)

Calculates fCO₂ in sea water with DIC, Alkalinity, Temperature, and Salinity unless pH is specified, in which case intermediate computation of pH is skipped and pCO₂ is calculated from the DIC, T, S and pH.

Alternativly, pH is returned if return_pH is true.

source
OceanBioME.Models.CarbonChemistryModel.K0Type
K0(; constant = -60.2409,
     inverse_T =  93.4517 * 100,
     log_T =  23.3585,
     T² =  0.0,
     S =  0.023517,
     ST = -0.023656 / 100,
     ST² =  0.0047036 / 100^2)

Parameterisation for carbon dioxide solubility equilibrium constant.

CO₂(g) ⇌ CO₂*(aq)

K₀ = [CO₂*(aq)]/f(CO₂)

Default values from Weiss, R.F. (1974, Mar. Chem., 2, 203–215).

source
OceanBioME.Models.CarbonChemistryModel.K1Type
K1(; constant =  61.2172,
     inverse_T = -3633.86,
     log_T = -9.67770,
     S =  0.011555,
     S² = -0.0001152,
     pressure_correction = 
        PressureCorrection(; a₀=-25.50, a₁=0.1271, a₂=0.0, b₀=-0.00308, b₁=0.0000877))

Parameterisation for aquious carbon dioxide - bicarbonate dissociation equilibrium constant.

CO₂*(aq) + H₂O ⇌ H₂CO₃ ⇌ HCO₃⁻ + H⁺

K₁ = [H⁺][HCO₃⁻]/[CO₂*]

Default values from Lueker et al. (2000, Mar. Chem., 70: 105–119).

source
OceanBioME.Models.CarbonChemistryModel.K2Type
K2(; constant = -25.9290,
     inverse_T = -471.78,
     log_T =  3.16967,
     S =  0.01781,
     S² = -0.0001122,
     pressure_correction = 
        PressureCorrection(; a₀=-15.82, a₁=-0.0219, a₂=0.0, b₀=0.00113, b₁=-0.0001475))

Parameterisation for bicarbonate dissociation equilibrium constant.

HCO₃⁻ ⇌ CO₃²⁻ + H⁺

K₂ = [H⁺][CO₃²⁻]/[HCO₃⁻]

Default values from Lueker et al. (2000, Mar. Chem., 70: 105–119).

source
OceanBioME.Models.CarbonChemistryModel.KBType
KB(; constant =  148.0248,
     inverse_T = -8966.90,
     inverse_T_sqrt_S = -2890.53,
     inverse_T_S = -77.942,
     inverse_T_sqrt_S³ =  1.728,
     inverse_T_S² = -0.0996,
     sqrt_S = 137.1942,
     S = 1.62142,
     log_T = -24.4344,
     log_T_sqrt_S = -25.085,
     S_log_T = -0.2474,
     T_sqrt_S =  0.053105,  
     pressure_correction = 
        PressureCorrection(; a₀=-29.48, a₁=0.1622, a₂=-0.0026080, b₀=-0.00284, b₁=0.0))

Parameterisation for boric acid equilibrium with water.

B(OH)₃ + H₂O ⇌ B(OH)₄⁻ + H⁺

Kᵇ = [H⁺][B(OH)₄⁻]/[B(OH)₃]

Default values from Dickson (1990, Deep-Sea Res., 37, 755–766).

source
OceanBioME.Models.CarbonChemistryModel.KFType
KF(; ionic_strength = IonicStrength(),
      sulfate_constant = KS(; ionic_strength),
      constant = -9.68,
      inverse_T = 874.0,
      sqrt_S =  0.111,
      log_S = 0.0,
      log_S_KS = 0.0,
      pressure_correction = 
         PressureCorrection(; a₀=-9.78, a₁=-0.0090, a₂=-0.000942, b₀=-0.00391, b₁=0.000054))

Parameterisation for hydrogen fluoride dissociation equilibrium constant.

HF ⇌ F⁻ + H⁺

Kᶠ = [H⁺][F⁻]/[HF]

Default values from Perez and Fraga (1987, Mar. Chem., 21, 161–168).

source
OceanBioME.Models.CarbonChemistryModel.KPType
KP(constant,
   inverse_T,
   log_T,
   sqrt_S,
   inverse_T_sqrt_S,
   S,
   inverse_T_S,
   pressure_correction)

Generic equilibrium constant parameterisation of the form used by Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677) for phosphoric acid dissociation.

source
OceanBioME.Models.CarbonChemistryModel.KSType
KS(; constant =  148.9652,
     inverse_T = -13847.26,
     log_T = -23.6521,
     sqrt_S = -5.977,
     inverse_T_sqrt_S =  118.67,
     log_T_sqrt_S =  1.0495,
     S = -0.01615,
     pressure_correction = 
        PressureCorrection(; a₀=-18.03, a₁=0.0466, a₂=0.000316, b₀=-0.00453, b₁=0.00009))

Parameterisation for bisulfate dissociation equilibrium constant.

HSO₄⁻ ⇌ SO₄²⁻ + H⁺

Kˢ = [H⁺][SO₄²⁻]/[HSO₄⁻]

Default values from Dickson (1990, Chem. Thermodyn., 22, 113–127).

source
OceanBioME.Models.CarbonChemistryModel.KSPType
KSP(therm_constant,
    therm_T,
    therm_inverse_T,
    therm_log_T,
    sea_sqrt_S,
    sea_T_sqrt_S,
    sea_inverse_T_sqrt_S,
    sea_S,
    sea_S_sqrt_S³,
    pressure_correction)

Generic CaCO₃ solubility parameterisation of the form given by Form from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).

source
OceanBioME.Models.CarbonChemistryModel.KSiType
KSi(; ionic_strength = IonicStrength(),
      constant =  117.385,
      inverse_T = -8904.2,
      log_T = -19.334,
      sqrt_Is = 3.5913,
      inverse_T_sqrt_Is = -458.79,
      Is = -1.5998,
      inverse_T_Is = 188.74,
      Is² = 0.07871,
      inverse_T_Is² = -12.1652,
      log_S = -0.001005)

Parameterisation for silicic acid dissociation equilibrium constant.

Si(OH)₄ ⇌ SiO(OH)₃⁻ + H⁺

Kʷ = [H⁺][SiO(OH)₃⁻]/[Si(OH)₄]

Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).

source
OceanBioME.Models.CarbonChemistryModel.KWType
KW(; constant =  148.9652,
     inverse_T = -13847.26,
     log_T = -23.6521,
     sqrt_S = -5.977,
     inverse_T_sqrt_S =  118.67,
     log_T_sqrt_S =  1.0495,
     S = -0.01615,
     pressure_correction = 
        PressureCorrection(; a₀=-20.02, a₁=0.1119, a₂=-0.001409, b₀=-0.00513, b₁=0.0000794))

Parameterisation for water dissociation equilibrium constant.

H₂O ⇌ OH⁻ + H⁺

Kʷ = [H⁺][OH⁻]

Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).

source
OceanBioME.Models.CarbonChemistryModel.KP1Method
KP1(; constant = 115.525,
      inverse_T = -4576.752,
      log_T = - 18.453,
      sqrt_S = 0.69171,
      inverse_T_sqrt_S = -106.736,
      S = -0.01844,
      inverse_T_S = -0.65643,
      pressure_correction = 
         PressureCorrection(; a₀=-14.51, a₁=0.1211, a₂=-0.000321, b₀=-0.00267, b₁=0.0000427))

Instance of KP returning the first phosphocic acid equilibrium constant.

H₃PO₄ ⇌ H₂PO₄⁻ + H⁺

Kᵖ¹ = [H⁺][H₂PO₄]/[H₃PO₄]

Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).

source
OceanBioME.Models.CarbonChemistryModel.KP2Method
KP2(; constant = 172.0883,
      inverse_T = -8814.715,
      log_T = -27.927,
      sqrt_S = 1.3566,
      inverse_T_sqrt_S = -160.340,
      S = -0.05778,
      inverse_T_S = 0.37335,
      pressure_correction = 
        PressureCorrection(; a₀=-23.12, a₁=0.1758, a₂=-0.002647, b₀=-0.00515, b₁=0.00009))

Instance of KP returning the second phosphocic acid equilibrium constant.

H₂PO₄⁻ ⇌ HPO₄²⁻ + H⁺

Kᵖ² = [H⁺][HPO₄²⁻]/[H₂PO₄⁻]

Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).

source
OceanBioME.Models.CarbonChemistryModel.KP3Method
KP3(; constant = -18.141,
      inverse_T = -3070.75,
      log_T = 0.0,
      sqrt_S = 2.81197,
      inverse_T_sqrt_S = 17.27039,
      S = -0.09984,
      inverse_T_S = -44.99486,
      pressure_correction = 
        PressureCorrection(; a₀=-26.57, a₁=0.2020, a₂=-0.0030420, b₀=-0.00408, b₁=0.0000714))

Instance of KP returning the third phosphocic acid equilibrium constant.

HPO₄²⁻ ⇌ PO₄ + H⁺

Kᵖ³ = [H⁺][PO₄³⁻]/[HPO₄⁻]

Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).

source
OceanBioME.Models.CarbonChemistryModel.KSP_aragoniteMethod

KSParagonite(; thermconstant = -171.945, thermT = -0.077993, therminverseT = 2903.293, thermlogT = 71.595, seasqrtS = -0.068393, seaTsqrtS = 0.0017276, seainverseTsqrtS = 88.135, seaS = -0.10018, seaSsqrtS³ = 0.0059415, pressure_correction = PressureCorrection(; a₀=-45.96, a₁=0.5304, a₂=-0.0, b₀=-0.01176, b₁=0.0003692))

Instance of KSP returning calcite solubility.

Default values from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).

source
OceanBioME.Models.CarbonChemistryModel.KSP_calciteMethod
KSP_calcite(; therm_constant = -171.9065,
              therm_T = -0.077993,
              therm_inverse_T = 2839.319,
              therm_log_T = 71.595,
              sea_sqrt_S = -0.77712,
              sea_T_sqrt_S = 0.0028426,
              sea_inverse_T_sqrt_S = 178.34,
              sea_S = -0.07711,
              sea_S_sqrt_S³ = 0.0041249,
              pressure_correction =
                  PressureCorrection(; a₀=-48.76, a₁=0.5304, a₂=-0.0, b₀=-0.01176, b₁=0.0003692))

Instance of KSP returning calcite solubility.

Default values from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).

source
OceanBioME.Models.CarbonChemistryModel.alkalinity_residualMethod
alkalinity_residual(H, p)

Returns the difference between total alkalinity computed from H(hydrogen ion concentration),DIC,borate,sulfate,phosphate,silicate, andfluorideconcentration and chemical equilibrium constants specified inp, and the specified totalAlk`alinity.

TAlk = [HCO₃⁻] + 2[CO₃²⁻] + [B(OH)₄⁻] + [OH⁻] + [HPO₄²⁻] + 2[PO₄³⁻] + [SiO(OH)₃⁻] 
       + [NH₃] + [HS⁻] - [H⁺] - [HSO₄⁻] - [HF] - [H₃PO₄] + minor acids and bases

Concentrations diagnosed as specified in Dickson et. al best practice descried in CarbonChemistry docstring.

Note ammonia (NH₃) is not currently included.

source

Light Attenuation Models

OceanBioME.Light.MultiBandPhotosyntheticallyActiveRadiationType
MultiBandPhotosyntheticallyActiveRadiation{F, FN, K, E, C, SPAR, SPARD}

Light attenuation model with multiple wave length bands where each band (i) is attenuated like:

∂PARᵢ(z)/∂z = PARᵢ(kʷ(i) + χ(i)Chl(z)ᵉ⁽ⁱ⁾)

Where kʷ(i) is the band specific water attenuation coefficient, e(i) the chlorophyll exponent, and χ(i) the chlorophyll attenuation coefficient.

When the fields are called with biogeochemical_auxiliary_fields an additional field named PAR is also returned which is a sum of the bands.

source
OceanBioME.Light.MultiBandPhotosyntheticallyActiveRadiationMethod
MultiBandPhotosyntheticallyActiveRadiation(; grid, 
                                             bands = ((400, 500), (500, 600), (600, 700)), #nm
                                             base_bands = MOREL_λ,
                                             base_water_attenuation_coefficient = MOREL_kʷ,
                                             base_chlorophyll_exponent = MOREL_e,
                                             base_chlorophyll_attenuation_coefficient = MOREL_χ,
                                             field_names = [par_symbol(n, length(bands)) for n in 1:length(bands)],
                                             surface_PAR = default_surface_PAR)

Returns a MultiBandPhotosyntheticallyActiveRadiation attenuation model of surface_PAR in divided into bands by surface_PAR_division.

The attenuation morelcoefficients are computed from `basewaterattenuationcoefficient,basechlorophyllexponent, andbasechlorophyllattenuationcoefficientwhich should be arrays of the coefficients atbasebands` wavelengths.

The returned field_names default to PAR₁, PAR₂, etc., but may be specified by the user instead.

Keyword Arguments

  • grid: grid for building the model on
  • water_red_attenuation, ..., phytoplankton_chlorophyll_ratio: parameter values
  • surface_PAR: function (or array in the future) for the photosynthetically available radiation at the surface, which should be f(x, y, t) where x and y are the native coordinates (i.e. meters for rectilinear grids and latitude/longitude as appropriate)
source
OceanBioME.Light.TwoBandPhotosyntheticallyActiveRadiationMethod
TwoBandPhotosyntheticallyActiveRadiation(; grid, 
                                           water_red_attenuation::FT = 0.225, # 1/m
                                           water_blue_attenuation::FT = 0.0232, # 1/m
                                           chlorophyll_red_attenuation::FT = 0.037, # 1/(m * (mgChl/m³) ^ eʳ)
                                           chlorophyll_blue_attenuation::FT = 0.074, # 1/(m * (mgChl/m³) ^ eᵇ)
                                           chlorophyll_red_exponent::FT = 0.629,
                                           chlorophyll_blue_exponent::FT = 0.674,
                                           pigment_ratio::FT = 0.7,
                                           phytoplankton_chlorophyll_ratio::FT = 1.31,
                                           surface_PAR::SPAR = default_surface_PAR)

Keyword Arguments

  • grid: grid for building the model on
  • water_red_attenuation, ..., phytoplankton_chlorophyll_ratio: parameter values
  • surface_PAR: function (or array in the future) for the photosynthetically available radiation at the surface, which should be f(x, y, t) where x and y are the native coordinates (i.e. meters for rectilinear grids and latitude/longitude as appropriate)
source

Sediments

OceanBioME.Models.Sediments.InstantRemineralisationMethod
InstantRemineralisation(; grid,
    burial_efficiency_constant1::FT = 0.013,
    burial_efficiency_constant2::FT = 0.53,
    burial_efficiency_half_saturation::FT = 7)

Return a single-layer instant remineralisaiton model for NPZD bgc models.

Example

using OceanBioME, Oceananigans, OceanBioME.Sediments

grid = RectilinearGrid(size=(3, 3, 30), extent=(10, 10, 200))

sediment_model = InstantRemineralisation(; grid)
source
OceanBioME.Models.Sediments.SimpleMultiGMethod
SimpleMultiG(; grid
               fast_decay_rate = 2/day,
               slow_decay_rate = 0.2/day,
               fast_redfield = 0.1509,
               slow_redfield = 0.13,
               fast_fraction = 0.74,
               slow_fraction = 0.26,
               refactory_fraction = 0.1,
               nitrate_oxidation_params = on_architecture(architecture(grid), [- 1.9785, 0.2261, -0.0615, -0.0289, - 0.36109, - 0.0232]),
               denitrification_params = on_architecture(architecture(grid), [- 3.0790, 1.7509, 0.0593, - 0.1923, 0.0604, 0.0662]),
               anoxic_params = on_architecture(architecture(grid), [- 3.9476, 2.6269, - 0.2426, -1.3349, 0.1826, - 0.0143]),
               solid_dep_params = on_architecture(architecture(grid), [0.233, 0.336, 982.0, - 1.548]))

Return a single-layer "multi G" sediment model (SimpleMultiG) on grid, where parameters can be optionally specified.

The model is a single layer (i.e. does not include porous diffusion) model with three classes of sediment organic matter which decay at three different rates (fast, slow, refactory). The nitrification/denitrification/anoxic mineralisation fractions default to the parameterisation of Soetaert et al. 2000; doi:10.1016/S0012-8252(00)00004-0.

This model has not yet been validated or compared to observational data. The variety of degridation processes is likely to be strongly dependent on oxygen availability (see https://bg.copernicus.org/articles/6/1273/2009/bg-6-1273-2009.pdf) so it will therefore be important to also thoroughly validate the oxygen model (also currently limited).

Example

julia> using OceanBioME, Oceananigans, OceanBioME.Sediments

julia> grid = RectilinearGrid(size=(3, 3, 30), extent=(10, 10, 200));

julia> sediment_model = SimpleMultiG(; grid)
┌ Warning: Sediment models are an experimental feature and have not yet been validated.
└ @ OceanBioME.Models.Sediments ~/Documents/Projects/OceanBioME.jl/src/Models/Sediments/simple_multi_G.jl:104
[ Info: This sediment model is currently only compatible with models providing NH₄, NO₃, O₂, and DIC.
Single-layer multi-G sediment model (Float64)
source

Gas exchange boundary conditions

OceanBioME.Models.GasExchangeModel.CarbonDioxideConcentrationType
CarbonDioxideConcentration(; carbon_chemistry, 
                             first_virial_coefficient = PolynomialVirialCoefficientForCarbonDioxide(),
                             cross_viral_coefficient = CrossVirialCoefficientForCarbonDioxide(),
                             air_pressue = 1 # atm)

Converts fCO₂ to partial pressure as per Dickson, A.G., Sabine, C.L. and Christian, J.R. (2007), Guide to Best Practices for Ocean CO 2 Measurements. PICES Special Publication 3, 191 pp.

source
OceanBioME.Models.GasExchangeModel.GasExchangeType
GasExchange

GasExchange returns the air-sea flux of a gas betwen water_concentration and air_concentration with a transfer_velocity computed from the temperature (provided later), and the wind_speed.

transfer_velocity should behave as a function of wind speed and temperature (i.e. k(u, T)), water_concentration a function of c(x, y, t, T, field_dependencies...).

water_concentration, air_concentration and wind_speed can either be numbers, functions of the form (x, y, t), functions of the form (i, j, grid, clock, model_fields) if discrete_form is set to true, or any kind of Field.

water_concentration should usually be a [Tracer]Concentration where is the name of the tracer (you will have to build your own if this is not OxygenConcentration), or a CarbonDioxideConcentration which diagnoses the partial pressure of CO₂ in the water.

source
OceanBioME.Models.GasExchangeModel.PartiallySolubleGasType
PartiallySolubleGas(; air_concentration, solubility)

Parameterises the available concentration of a gas dissolving in water in the form $\alpha C_a$ where $lpha$ is the Ostwald solubility coeffieient and $C_a$ is the concentration in the air.

source
OceanBioME.Models.GasExchangeModel.CarbonDioxideGasExchangeBoundaryConditionMethod
CarbonDioxideGasExchangeBoundaryCondition(; carbon_chemistry = CarbonChemistry(),
                                            transfer_velocity = SchmidtScaledTransferVelocity(; schmidt_number = CarbonDioxidePolynomialSchmidtNumber()),
                                            air_concentration = 413, # ppmv
                                            wind_speed = 2,
                                            water_concentration = nothing,
                                            silicate_and_phosphate_names = nothing,
                                            kwargs...)

Returns a FluxBoundaryCondition for the gas exchange between carbon dioxide dissolved in the water specified by the carbon_chemisty model, and air_concentration with transfer_velocity (see GasExchangeBoundaryCondition for details).

silicate_and_phosphate_names should either be nothing, a Tupleof symbols specifying the name of the silicate and phosphate tracers, or aNamedTupleof values for thecarbon_chemistry` model.

kwargs are passed on to GasExchangeBoundaryCondition.

Note: The model always requires T, S, DIC, and Alk to be present in the model.

source
OceanBioME.Models.GasExchangeModel.GasExchangeBoundaryConditionMethod
GasExchangeBoundaryCondition(; water_concentration,
                               air_concentration,
                               transfer_velocity,
                               wind_speed)

Returns a FluxBoundaryCondition for the gas exchange between water_concentration and air_concentration with transfer_velocity.

water_concentration, air_concentration and wind_speed can either be numbers, functions of the form (x, y, t), functions of the form (i, j, grid, clock, model_fields) if discrete_form is set to true, or any kind of Field.

water_concentration should usually be a [Tracer]Concentration where is the name of the tracer (you will have to build your own if this is not OxygenConcentration), or a CarbonDioxideConcentration which diagnoses the partial pressure of CO₂ in the water.

transfer_velocity should be a function of the form k(u₁₀, T).

source
OceanBioME.Models.GasExchangeModel.OxygenGasExchangeBoundaryConditionMethod
OxygenGasExchangeBoundaryCondition(; transfer_velocity = SchmidtScaledTransferVelocity(; schmidt_number = OxygenPolynomialSchmidtNumber()),
                                     water_concentration = OxygenConcentration(),
                                     air_concentration = 9352.7, # mmolO₂/m³
                                     wind_speed = 2,
                                     kwagrs...)

Returns a FluxBoundaryCondition for the gas exchange between oxygen dissolved in the water specified by the the OxygenConcentration in the base model, and air_concentration with transfer_velocity (see GasExchangeBoundaryCondition for details).

kwargs are passed on to GasExchangeBoundaryCondition.

source
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.SchmidtScaledTransferVelocityType
SchmidtScaledTransferVelocity(; schmidt_number, 
                                base_transfer_velocity = Ho06())

Returns a model for gas transfer velocity which depends on the u₁₀, the 10m-wind, and Temperature. The model is of the typical form:

k(u₁₀, T) = k₆₆₀(u₁₀) √(660/Sc(T))

The base_transfer_velocity (k₆₆₀) is typically an empirically derived gas transfer velocity normalised by the Scmidt number for CO₂ at 20°C (660), and the schmidt_number (Sc) is a parameterisation of the gas specific Schmidt number.

source

Box Model

OceanBioME.BoxModels.BoxModelMethod
BoxModel(; biogeochemistry,
           forcing = NamedTuple(),
           timestepper = :RungeKutta3,
           clock = Clock(; time = 0.0),
           prescribed_tracers::PT = (T = (t) -> 0, ))

Constructs a box model of a biogeochemistry model. Once this has been constructed you can set initial condiitons by set!(model, X=1.0...).

Keyword Arguments

  • biogeochemistry: (required) an OceanBioME biogeochemical model, most models must be passed a grid which can be set to a BoxModelGrid for box models
  • forcing: NamedTuple of additional forcing functions for the biogeochemical tracers to be integrated
  • timestepper: Timestepper to integrate model
  • clock: Oceananigans clock to keep track of time
  • prescribed_tracers: named tuple of tracer names and function (f(t)) prescribing tracer values
source
Oceananigans.Fields.set!Method
set!(model::BoxModel; kwargs...)

Set the values for a BoxModel

Arguments

  • model - the model to set the arguments for

Keyword Arguments

  • variables and value pairs to set
source