Library
Documenting the user interface.
OceanBioME.jl
OceanBioME.OceanBioME
— ModuleA fast and flexible modelling environment for modelling the coupled interactions between ocean biogeochemistry, carbonate chemistry, and physics.
OceanBioME.Biogeochemistry
— MethodBiogeochemistry(underlying_biogeochemistry;
light_attenuation = nothing,
sediment = nothing,
particles = nothing,
modifiers = nothing)
Construct a biogeochemical model based on underlying_biogeochemistry
which may have a light_attenuation
model, sediment
, particles
, and modifiers
.
Keyword Arguments
light_attenuation_model
: light attenuation model which integrated the attenuation of available lightsediment_model
: slot forAbstractSediment
particles
: slot forBiogeochemicalParticles
modifiers
: slot for components which modify the biogeochemistry when the tendencies have been calculated or when the state is updated
OceanBioME.ScaleNegativeTracers
— MethodScaleNegativeTracers(; tracers, scalefactors = ones(length(tracers)), warn = false, invalid_fill_value = NaN)
Constructs a modifier to scale tracers
so that none are negative. Use like:
modifier = ScaleNegativeTracers((:P, :Z, :N))
biogeochemistry = Biogeochemistry(...; modifier)
This method is better, though still imperfect, method to prevent numerical errors that lead to negative tracer values compared to ZeroNegativeTracers
. Please see discussion in github.
Future plans include implement a positivity-preserving timestepping scheme as the ideal alternative.
~~If warn
is true then scaling will raise a warning.~~
invalid_fill_value
specifies the value to set the total cell content to if the total is less than 0 (meaning that total tracer conservation can not be enforced). If the value is set to anything other than NaN
this scheme no longer conserves mass. While this may be useful to prevent spurious numerics leading to crashing care should be taken that the mass doesn't deviate too much.
This scheme is similar to that used by NEMO-PISCES, although they scale the tendency rather than the value, while other Earth system models simply set negative tracers to zero, for example NCAR's MARBL and NEMO-TOPAZ2, which does not conserve mass. More complicated schemes exist, for example ROMS-BECS uses an implicite-itterative approach where each component is updated in sequence to garantee mass conservation, possibly at the expense of numerical precision.
OceanBioME.ScaleNegativeTracers
— MethodScaleNegativeTracers(model::UnderlyingBiogeochemicalModel; warn = false)
Construct a modifier to scale the conserved tracers in model
.
If warn
is true then scaling will raise a warning.
OceanBioME.ZeroNegativeTracers
— TypeZeroNegativeTracers(; exclude = ())
Construct a modifier that zeroes any negative tracers excluding those listed in exclude
.
This method is not recommended as a way to preserve positivity of tracers since it does not conserve the total tracer.
OceanBioME.conserved_tracers
— Methodconserved_tracers(model::UnderlyingBiogeochemicalModel)
Returns the names of tracers which together are conserved in model
OceanBioME.redfield
— Methodredfield(i, j, k, val_tracer_name, bgc, tracers)
Returns the redfield ratio of tracer_name
from bgc
at i
, j
, k
.
OceanBioME.redfield
— Methodredfield(val_tracer_name, bgc)
redfield(val_tracer_name, bgc, tracers)
Returns the redfield ratio of tracer_name
from bgc
when it is constant across the domain.
Biogeochemical Models
Nutrient Phytoplankton Zooplankton Detritus
OceanBioME.Models.NPZDModel
— ModuleNutrient-Phytoplankton-Zooplankton-Detritus model of Kuhn et al. (2015).
Tracers
- Nutrients: N (mmol N/m³)
- Phytoplankton: P (mmol N/m³)
- Zooplankton: Z (mmol N/m³)
- Detritus: D (mmol N/m³)
Required submodels
- Photosynthetically available radiation: PAR (W/m²)
OceanBioME.Models.NPZDModel.NutrientPhytoplanktonZooplanktonDetritus
— MethodNutrientPhytoplanktonZooplanktonDetritus(; grid,
initial_photosynthetic_slope::FT = 0.1953 / day, # 1/(W/m²)/s
base_maximum_growth::FT = 0.6989 / day, # 1/s
nutrient_half_saturation::FT = 2.3868, # mmol N/m³
base_respiration_rate::FT = 0.066 / day, # 1/s/(mmol N / m³)
phyto_base_mortality_rate::FT = 0.0101 / day, # 1/s/(mmol N / m³)
maximum_grazing_rate::FT = 2.1522 / day, # 1/s
grazing_half_saturation::FT = 0.5573, # mmol N/m³
assimulation_efficiency::FT = 0.9116,
base_excretion_rate::FT = 0.0102 / day, # 1/s/(mmol N / m³)
zoo_base_mortality_rate::FT = 0.3395 / day, # 1/s/(mmol N / m³)²
remineralization_rate::FT = 0.1213 / day, # 1/s
surface_photosynthetically_active_radiation = default_surface_PAR,
light_attenuation_model::LA =
TwoBandPhotosyntheticallyActiveRadiation(; grid,
surface_PAR = surface_photosynthetically_active_radiation),
sediment_model::S = nothing,
sinking_speeds = (P = 0.2551/day, D = 2.7489/day),
open_bottom::Bool = true,
scale_negatives = false,
particles::P = nothing,
modifiers::M = nothing)
Construct a Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) biogeochemical model.
Keyword Arguments
grid
: (required) the geometry to build the model on, required to calculate sinkinginitial_photosynthetic_slope
, ...,remineralization_rate
: NPZD parameter valuessurface_photosynthetically_active_radiation
: function (or array in the future) for the photosynthetically available radiation at the surface, should be shapef(x, y, t)
light_attenuation_model
: light attenuation model which integrated the attenuation of available lightsediment_model
: slot forAbstractSediment
sinking_speed
: named tuple of constant sinking, of fields (i.e.ZFaceField(...)
) for any tracers which sink (convention is that a sinking speed is positive, but a field will need to follow the usual down being negative)open_bottom
: should the sinking velocity be smoothly brought to zero at the bottom to prevent the tracers leaving the domainscale_negatives
: scale negative tracers?particles
: slot forBiogeochemicalParticles
modifiers
: slot for components which modify the biogeochemistry when the tendencies have been calculated or when the state is updated
Example
julia> using OceanBioME
julia> using Oceananigans
julia> grid = RectilinearGrid(size=(20, 30), extent=(200, 200), topology=(Bounded, Flat, Bounded));
julia> model = NutrientPhytoplanktonZooplanktonDetritus(; grid)
NutrientPhytoplanktonZooplanktonDetritus{Float64} model, with (:P, :D) sinking
Light attenuation: Two-band light attenuation model (Float64)
Sediment: Nothing
Particles: Nothing
Modifiers: Nothing
The Lodyc-DAMTP Ocean Biogeochemical Simulation Tools for Ecosystem and Resources (LOBSTER)
OceanBioME.Models.LOBSTERModel
— ModuleThe Lodyc-DAMTP Ocean Biogeochemical Simulation Tools for Ecosystem and Resources (LOBSTER) model.
Tracers
- Nitrates: NO₃ (mmol N/m³)
- Ammonia: NH₄ (mmol N/m³)
- Phytoplankton: P (mmol N/m³)
- Zooplankton: Z (mmol N/m³)
- Small (slow sinking) particulate organic matter: sPOM (mmol N/m³)
- Large (fast sinking) particulate organic matter: bPOM (mmol N/m³)
- Dissolved organic matter: DOM (mmol N/m³)
Optional tracers
Carbonate chemistry
- Dissolved inorganic carbon: DIC (mmol C/m³)
- Alkalinity: Alk (meq/m³)
Oxygen chemistry
- Oxygen: O₂ (mmol O₂/m³)
Variable redfield
- Small (slow sinking) particulate organic matter carbon content: sPOC (mmol C/m³)
- Large (fast sinking) particulate organic matter carbon content: bPOC (mmol C/m³)
- Dissolved organic matter carbon content: DOC (mmol C/m³)
- When this option is enabled then the usual sPOM and bPOM change to sPON and bPON as they explicitly represent the nitrogen contained in the particulate matter
Required submodels
- Photosynthetically available radiation: PAR (W/m²)
For optional tracers:
- Temperature: T (ᵒC)
- Salinity: S (‰)
OceanBioME.Models.LOBSTERModel.LOBSTER
— MethodLOBSTER(; grid,
phytoplankton_preference::FT = 0.5,
maximum_grazing_rate::FT = 9.26e-6, # 1/s
grazing_half_saturation::FT = 1.0, # mmol N/m³
light_half_saturation::FT = 33.0, # W/m² (?)
nitrate_ammonia_inhibition::FT = 3.0,
nitrate_half_saturation::FT = 0.7, # mmol N/m³
ammonia_half_saturation::FT = 0.001, # mmol N/m³
maximum_phytoplankton_growthrate::FT = 1.21e-5, # 1/s
zooplankton_assimilation_fraction::FT = 0.7,
zooplankton_mortality::FT = 2.31e-6, # 1/s/mmol N/m³
zooplankton_excretion_rate::FT = 5.8e-7, # 1/s
phytoplankton_mortality::FT = 5.8e-7, # 1/s
small_detritus_remineralisation_rate::FT = 5.88e-7, # 1/s
large_detritus_remineralisation_rate::FT = 5.88e-7, # 1/s
phytoplankton_exudation_fraction::FT = 0.05,
nitrification_rate::FT = 5.8e-7, # 1/s
ammonia_fraction_of_exudate::FT = 0.75,
ammonia_fraction_of_excriment::FT = 0.5,
ammonia_fraction_of_detritus::FT = 0.0,
phytoplankton_redfield::FT = 6.56, # mol C/mol N
organic_redfield::FT = 6.56, # mol C/mol N
phytoplankton_chlorophyll_ratio::FT = 1.31, # g Chl/mol N
organic_carbon_calcate_ratio::FT = 0.1, # mol CaCO₃/mol C
respiration_oxygen_nitrogen_ratio::FT = 10.75, # mol O/molN
nitrification_oxygen_nitrogen_ratio::FT = 2.0, # mol O/molN
slow_sinking_mortality_fraction::FT = 0.5,
fast_sinking_mortality_fraction::FT = 0.5,
dissolved_organic_breakdown_rate::FT = 3.86e-7, # 1/s
zooplankton_calcite_dissolution::FT = 0.3,
surface_photosynthetically_active_radiation = default_surface_PAR,
light_attenuation_model::LA =
TwoBandPhotosyntheticallyActiveRadiation(; grid,
surface_PAR = surface_photosynthetically_active_radiation),
sediment_model::S = nothing,
carbonates::Bool = false,
oxygen::Bool = false,
variable_redfield::Bool = false,
sinking_speeds = (sPOM = 3.47e-5, bPOM = 200/day),
open_bottom::Bool = true,
scale_negatives = false,
particles::P = nothing,
modifiers::M = nothing)
Construct an instance of the LOBSTER biogeochemical model.
Keyword Arguments
grid
: (required) the geometry to build the model on, required to calculate sinkingphytoplankton_preference
, ...,dissolved_organic_breakdown_rate
: LOBSTER parameter valuessurface_photosynthetically_active_radiation
: funciton (or array in the future) for the photosynthetically available radiation at the surface, should be shapef(x, y, t)
light_attenuation_model
: light attenuation model which integrated the attenuation of available lightsediment_model
: slot forAbstractSediment
carbonates
,oxygen
, andvariable_redfield
: include models for carbonate chemistry and/or oxygen chemistry and/or variable redfield ratio dissolved and particulate organic mattersinking_speed
: named tuple of constant sinking, of fields (i.e.ZFaceField(...)
) for any tracers which sink (convention is that a sinking speed is positive, but a field will need to follow the usual down being negative)open_bottom
: should the sinking velocity be smoothly brought to zero at the bottom to prevent the tracers leaving the domainscale_negatives
: scale negative tracers?particles
: slot forBiogeochemicalParticles
modifiers
: slot for components which modify the biogeochemistry when the tendencies have been calculated or when the state is updated
Example
julia> using OceanBioME
julia> using Oceananigans
julia> grid = RectilinearGrid(size=(3, 3, 30), extent=(10, 10, 200));
julia> model = LOBSTER(; grid)
LOBSTER{Float64} with carbonates ❌, oxygen ❌, variable Redfield ratio ❌ and (:sPOM, :bPOM) sinking
Light attenuation: Two-band light attenuation model (Float64)
Sediment: Nothing
Particles: Nothing
Modifiers: Nothing
Sugar kelp (Saccharina latissima)
OceanBioME.Models.SLatissimaModel
— ModuleSugar kelp model of Broch and Slagstad (2012) and updated by Broch et al. (2013), Fossberg et al. (2018), and Broch et al. (2019).
Prognostic properties
- Area: A (dm²)
- Nitrogen reserve: N (gN/gSW)
- Carbon reserve: C (gC/gSW)
Tracer dependencies
- Nitrates: NO₃ (mmol N/m³)
- Photosynthetically available radiation: PAR (einstein/m²/day)
Optional
- Ammonia: NH₄ (mmol N/m³)
OceanBioME.Models.SLatissimaModel.SLatissima
— TypeSLatissima(; architecture :: AR = CPU(),
growth_rate_adjustment :: FT = 4.5,
photosynthetic_efficiency :: FT = 4.15e-5 * 24 * 10^6 / (24 * 60 * 60),
minimum_carbon_reserve :: FT = 0.01,
structural_carbon :: FT = 0.2,
exudation :: FT = 0.5,
erosion :: FT = 0.22,
saturation_irradiance :: FT = 90 * day/ (10 ^ 6),
structural_dry_weight_per_area :: FT = 0.5,
structural_dry_to_wet_weight :: FT = 0.0785,
carbon_reserve_per_carbon :: FT = 2.1213,
nitrogen_reserve_per_nitrogen :: FT = 2.72,
minimum_nitrogen_reserve :: FT = 0.0126,
maximum_nitrogen_reserve :: FT = 0.0216,
growth_adjustment_2 :: FT = 0.039 / (2 * (1 - minimum_nitrogen_reserve / maximum_nitrogen_reserve)),
growth_adjustment_1 :: FT = 0.18 / (2 * (1 - minimum_nitrogen_reserve / maximum_nitrogen_reserve)) - growth_adjustment_2,
maximum_specific_growth_rate :: FT = 0.18,
structural_nitrogen :: FT = 0.0146,
photosynthesis_at_ref_temp_1 :: FT = 1.22e-3 * 24,
photosynthesis_at_ref_temp_2 :: FT = 1.3e-3 * 24,
photosynthesis_ref_temp_1 :: FT = 285.0,
photosynthesis_ref_temp_2 :: FT = 288.0,
photoperiod_1 :: FT = 0.85,
photoperiod_2 :: FT = 0.3,
respiration_at_ref_temp_1 :: FT = 2.785e-4 * 24,
respiration_at_ref_temp_2 :: FT = 5.429e-4 * 24,
respiration_ref_temp_1 :: FT = 285.0,
respiration_ref_temp_2 :: FT = 290.0,
photosynthesis_arrhenius_temp :: FT = (1 / photosynthesis_ref_temp_1 - 1 / photosynthesis_ref_temp_2) ^ -1 * log(photosynthesis_at_ref_temp_2 / photosynthesis_at_ref_temp_1),
photosynthesis_low_temp :: FT = 271.0,
photosynthesis_high_temp :: FT = 296.0,
photosynthesis_high_arrhenius_temp :: FT = 1414.87,
photosynthesis_low_arrhenius_temp :: FT = 4547.89,
respiration_arrhenius_temp :: FT = (1 / respiration_ref_temp_1 - 1 / respiration_ref_temp_2) ^ -1 * log(respiration_at_ref_temp_2 / respiration_at_ref_temp_1),
current_speed_for_0p65_uptake :: FT = 0.03,
nitrate_half_saturation :: FT = 4.0,
ammonia_half_saturation :: FT = 1.3,
maximum_nitrate_uptake :: FT = 10 * structural_dry_weight_per_area * 24 * 14 / (10^6),
maximum_ammonia_uptake :: FT = 12 * structural_dry_weight_per_area * 24 * 14 / (10^6),
current_1 :: FT = 0.72,
current_2 :: FT = 0.28,
current_3 :: FT = 0.045,
respiration_reference_A :: FT = 1.11e-4 * 24,
respiration_reference_B :: FT = 5.57e-5 * 24,
exudation_redfield_ratio :: FT = Inf,
prescribed_velocity :: U = 0.1,
#position
x :: P = on_architecture(architecture, [0.0])
y :: P = on_architecture(architecture, zeros(Float64, length(x))),
z :: P = on_architecture(architecture, zeros(Float64, length(x))),
#properties
A :: P = on_architecture(architecture, ones(Float64, length(x)) * 30),
N :: P = on_architecture(architecture, ones(Float64, length(x)) * 0.01),
C :: P = on_architecture(architecture, ones(Float64, length(x)) * 0.1),
#feedback
nitrate_uptake :: P = on_architecture(architecture, zeros(Float64, length(x))),
ammonia_uptake :: P = on_architecture(architecture, zeros(Float64, length(x))),
primary_production :: P = on_architecture(architecture, zeros(Float64, length(x))),
frond_exudation :: P = on_architecture(architecture, zeros(Float64, length(x))),
nitrogen_erosion :: P = on_architecture(architecture, zeros(Float64, length(x))),
carbon_erosion :: P = on_architecture(architecture, zeros(Float64, length(x))),
custom_dynamics :: F = no_dynamics,
scalefactor :: FT = 1.0,
latitude :: FT = 57.5)
Keyword Arguments
architecture
: the architecture to adapt arrays togrowth_rate_adjustment
, ...,exudation_redfield_ratio
: parameter valuesprescribed_velocity
: functions for the relative velocityf(x, y, z, t)
x
,y
andz
: positions of the particlesA
,N
, andC
: area, nitrogen, and carbon reservesnitrate_uptake
...carbon_erosion
: diagnostic values coupled to tracer fieldscustom_dynamics
: place to add any function of formf!(particles, model, bgc, Δt)
scalefactor
: scalar scaling for tracer couplinglatitude
: model latitude for seasonal growth modulation
Carbon Chemistry
OceanBioME.Models.CarbonChemistryModel
— ModuleCarbonChemistryModel
to solve chemical equilibrium parameterisations
OceanBioME.Models.CarbonChemistryModel.CarbonChemistry
— TypeCarbonChemistry(; ionic_strength = IonicStrength(),
solubility = K0(),
carbonic_acid = (K1 = K1(), K2 = K2()),
boric_acid = KB(),
water = KW(),
sulfate = KS(; ionic_strength),
fluoride = KF(; ionic_strength),
phosphoric_acid = (KP1 = KP1(), KP2 = KP2(), KP3 = KP3()),
silicic_acid = KSi(; ionic_strength),
calcite_solubility = KSP_calcite(),
density_function = teos10_polynomial_approximation)
Carbon chemistry model capable of solving for sea water pCO₂ from DIC and total alkalinity or DIC and pH.
Default form from Dickson, A.G., Sabine, C.L. and Christian, J.R. (2007), Guide to Best Practices for Ocean CO 2 Measurements. PICES Special Publication 3, 191 pp.
See each parameters documentation for origional sources.
Example
julia> using OceanBioME
julia> carbon_chemistry = CarbonChemistry()
`CarbonChemistry` model which solves for pCO₂ and pH
julia> pCO₂ = carbon_chemistry(; DIC = 2000, Alk = 2000, T = 10, S = 35)
1308.0843992121615
julia> pH = carbon_chemistry(; DIC = 2000, Alk = 2000, T = 10, S = 35, return_pH = true)
7.502534641304366
julia> pCO₂_higher_pH = carbon_chemistry(; DIC = 2000, T = 10, S = 35, pH = 7.5)
1315.6558976217746
OceanBioME.Models.CarbonChemistryModel.CarbonChemistry
— Method(p::CarbonChemistry)(; DIC, T, S, Alk = 0, pH = nothing,
return_pH = false,
boron = 0.000232 / 10.811 * S / 1.80655,
sulfate = 0.14 / 96.06 * S / 1.80655,
fluoride = 0.000067 / 18.9984 * S / 1.80655,
silicate = 0,
phosphate = 0,
upper_pH_bound = 14,
lower_pH_bound = 0)
Calculates fCO₂
in sea water with DIC
, Alk
alinity, T
emperature, and S
alinity unless pH
is specified, in which case intermediate computation of pH
is skipped and pCO₂
is calculated from the DIC
, T
, S
and pH
.
Alternativly, pH
is returned if return_pH
is true
.
OceanBioME.Models.CarbonChemistryModel.IonicStrength
— TypeIonicStrength(; a = 19.924,
b = 1000.0,
c = -1.005)
Parameterisation of the ionic strength of sea water.
Is(S) = aS / (b + cS)
Default values from Dickson (1990, Chem. Thermodyn., 22, 113–127).
OceanBioME.Models.CarbonChemistryModel.K0
— TypeK0(; constant = -60.2409,
inverse_T = 93.4517 * 100,
log_T = 23.3585,
T² = 0.0,
S = 0.023517,
ST = -0.023656 / 100,
ST² = 0.0047036 / 100^2)
Parameterisation for carbon dioxide solubility equilibrium constant.
CO₂(g) ⇌ CO₂*(aq)
K₀ = [CO₂*(aq)]/f(CO₂)
Default values from Weiss, R.F. (1974, Mar. Chem., 2, 203–215).
OceanBioME.Models.CarbonChemistryModel.K1
— TypeK1(; constant = 61.2172,
inverse_T = -3633.86,
log_T = -9.67770,
S = 0.011555,
S² = -0.0001152,
pressure_correction =
PressureCorrection(; a₀=-25.50, a₁=0.1271, a₂=0.0, b₀=-0.00308, b₁=0.0000877))
Parameterisation for aquious carbon dioxide - bicarbonate dissociation equilibrium constant.
CO₂*(aq) + H₂O ⇌ H₂CO₃ ⇌ HCO₃⁻ + H⁺
K₁ = [H⁺][HCO₃⁻]/[CO₂*]
Default values from Lueker et al. (2000, Mar. Chem., 70: 105–119).
OceanBioME.Models.CarbonChemistryModel.K2
— TypeK2(; constant = -25.9290,
inverse_T = -471.78,
log_T = 3.16967,
S = 0.01781,
S² = -0.0001122,
pressure_correction =
PressureCorrection(; a₀=-15.82, a₁=-0.0219, a₂=0.0, b₀=0.00113, b₁=-0.0001475))
Parameterisation for bicarbonate dissociation equilibrium constant.
HCO₃⁻ ⇌ CO₃²⁻ + H⁺
K₂ = [H⁺][CO₃²⁻]/[HCO₃⁻]
Default values from Lueker et al. (2000, Mar. Chem., 70: 105–119).
OceanBioME.Models.CarbonChemistryModel.KB
— TypeKB(; constant = 148.0248,
inverse_T = -8966.90,
inverse_T_sqrt_S = -2890.53,
inverse_T_S = -77.942,
inverse_T_sqrt_S³ = 1.728,
inverse_T_S² = -0.0996,
sqrt_S = 137.1942,
S = 1.62142,
log_T = -24.4344,
log_T_sqrt_S = -25.085,
S_log_T = -0.2474,
T_sqrt_S = 0.053105,
pressure_correction =
PressureCorrection(; a₀=-29.48, a₁=0.1622, a₂=-0.0026080, b₀=-0.00284, b₁=0.0))
Parameterisation for boric acid equilibrium with water.
B(OH)₃ + H₂O ⇌ B(OH)₄⁻ + H⁺
Kᵇ = [H⁺][B(OH)₄⁻]/[B(OH)₃]
Default values from Dickson (1990, Deep-Sea Res., 37, 755–766).
OceanBioME.Models.CarbonChemistryModel.KF
— TypeKF(; ionic_strength = IonicStrength(),
sulfate_constant = KS(; ionic_strength),
constant = -9.68,
inverse_T = 874.0,
sqrt_S = 0.111,
log_S = 0.0,
log_S_KS = 0.0,
pressure_correction =
PressureCorrection(; a₀=-9.78, a₁=-0.0090, a₂=-0.000942, b₀=-0.00391, b₁=0.000054))
Parameterisation for hydrogen fluoride dissociation equilibrium constant.
HF ⇌ F⁻ + H⁺
Kᶠ = [H⁺][F⁻]/[HF]
Default values from Perez and Fraga (1987, Mar. Chem., 21, 161–168).
OceanBioME.Models.CarbonChemistryModel.KP
— TypeKP(constant,
inverse_T,
log_T,
sqrt_S,
inverse_T_sqrt_S,
S,
inverse_T_S,
pressure_correction)
Generic equilibrium constant parameterisation of the form used by Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677) for phosphoric acid dissociation.
OceanBioME.Models.CarbonChemistryModel.KS
— TypeKS(; constant = 148.9652,
inverse_T = -13847.26,
log_T = -23.6521,
sqrt_S = -5.977,
inverse_T_sqrt_S = 118.67,
log_T_sqrt_S = 1.0495,
S = -0.01615,
pressure_correction =
PressureCorrection(; a₀=-18.03, a₁=0.0466, a₂=0.000316, b₀=-0.00453, b₁=0.00009))
Parameterisation for bisulfate dissociation equilibrium constant.
HSO₄⁻ ⇌ SO₄²⁻ + H⁺
Kˢ = [H⁺][SO₄²⁻]/[HSO₄⁻]
Default values from Dickson (1990, Chem. Thermodyn., 22, 113–127).
OceanBioME.Models.CarbonChemistryModel.KSP
— TypeKSP(therm_constant,
therm_T,
therm_inverse_T,
therm_log_T,
sea_sqrt_S,
sea_T_sqrt_S,
sea_inverse_T_sqrt_S,
sea_S,
sea_S_sqrt_S³,
pressure_correction)
Generic CaCO₃ solubility parameterisation of the form given by Form from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).
OceanBioME.Models.CarbonChemistryModel.KSi
— TypeKSi(; ionic_strength = IonicStrength(),
constant = 117.385,
inverse_T = -8904.2,
log_T = -19.334,
sqrt_Is = 3.5913,
inverse_T_sqrt_Is = -458.79,
Is = -1.5998,
inverse_T_Is = 188.74,
Is² = 0.07871,
inverse_T_Is² = -12.1652,
log_S = -0.001005)
Parameterisation for silicic acid dissociation equilibrium constant.
Si(OH)₄ ⇌ SiO(OH)₃⁻ + H⁺
Kʷ = [H⁺][SiO(OH)₃⁻]/[Si(OH)₄]
Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).
OceanBioME.Models.CarbonChemistryModel.KW
— TypeKW(; constant = 148.9652,
inverse_T = -13847.26,
log_T = -23.6521,
sqrt_S = -5.977,
inverse_T_sqrt_S = 118.67,
log_T_sqrt_S = 1.0495,
S = -0.01615,
pressure_correction =
PressureCorrection(; a₀=-20.02, a₁=0.1119, a₂=-0.001409, b₀=-0.00513, b₁=0.0000794))
Parameterisation for water dissociation equilibrium constant.
H₂O ⇌ OH⁻ + H⁺
Kʷ = [H⁺][OH⁻]
Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).
OceanBioME.Models.CarbonChemistryModel.PressureCorrection
— TypePressureCorrection(a₀, a₁, a₂,
b₀, b₁, b₂,
R)
Parameterisation for the pressure effect on thermodynamic constants.
Form from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).
OceanBioME.Models.CarbonChemistryModel.KP1
— MethodKP1(; constant = 115.525,
inverse_T = -4576.752,
log_T = - 18.453,
sqrt_S = 0.69171,
inverse_T_sqrt_S = -106.736,
S = -0.01844,
inverse_T_S = -0.65643,
pressure_correction =
PressureCorrection(; a₀=-14.51, a₁=0.1211, a₂=-0.000321, b₀=-0.00267, b₁=0.0000427))
Instance of KP
returning the first phosphocic acid equilibrium constant.
H₃PO₄ ⇌ H₂PO₄⁻ + H⁺
Kᵖ¹ = [H⁺][H₂PO₄]/[H₃PO₄]
Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).
OceanBioME.Models.CarbonChemistryModel.KP2
— MethodKP2(; constant = 172.0883,
inverse_T = -8814.715,
log_T = -27.927,
sqrt_S = 1.3566,
inverse_T_sqrt_S = -160.340,
S = -0.05778,
inverse_T_S = 0.37335,
pressure_correction =
PressureCorrection(; a₀=-23.12, a₁=0.1758, a₂=-0.002647, b₀=-0.00515, b₁=0.00009))
Instance of KP
returning the second phosphocic acid equilibrium constant.
H₂PO₄⁻ ⇌ HPO₄²⁻ + H⁺
Kᵖ² = [H⁺][HPO₄²⁻]/[H₂PO₄⁻]
Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).
OceanBioME.Models.CarbonChemistryModel.KP3
— MethodKP3(; constant = -18.141,
inverse_T = -3070.75,
log_T = 0.0,
sqrt_S = 2.81197,
inverse_T_sqrt_S = 17.27039,
S = -0.09984,
inverse_T_S = -44.99486,
pressure_correction =
PressureCorrection(; a₀=-26.57, a₁=0.2020, a₂=-0.0030420, b₀=-0.00408, b₁=0.0000714))
Instance of KP
returning the third phosphocic acid equilibrium constant.
HPO₄²⁻ ⇌ PO₄ + H⁺
Kᵖ³ = [H⁺][PO₄³⁻]/[HPO₄⁻]
Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).
OceanBioME.Models.CarbonChemistryModel.KSP_aragonite
— MethodKSParagonite(; thermconstant = -171.945, thermT = -0.077993, therminverseT = 2903.293, thermlogT = 71.595, seasqrtS = -0.068393, seaTsqrtS = 0.0017276, seainverseTsqrtS = 88.135, seaS = -0.10018, seaSsqrtS³ = 0.0059415, pressure_correction = PressureCorrection(; a₀=-45.96, a₁=0.5304, a₂=-0.0, b₀=-0.01176, b₁=0.0003692))
Instance of KSP
returning calcite solubility.
Default values from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).
OceanBioME.Models.CarbonChemistryModel.KSP_calcite
— MethodKSP_calcite(; therm_constant = -171.9065,
therm_T = -0.077993,
therm_inverse_T = 2839.319,
therm_log_T = 71.595,
sea_sqrt_S = -0.77712,
sea_T_sqrt_S = 0.0028426,
sea_inverse_T_sqrt_S = 178.34,
sea_S = -0.07711,
sea_S_sqrt_S³ = 0.0041249,
pressure_correction =
PressureCorrection(; a₀=-48.76, a₁=0.5304, a₂=-0.0, b₀=-0.01176, b₁=0.0003692))
Instance of KSP
returning calcite solubility.
Default values from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).
OceanBioME.Models.CarbonChemistryModel.alkalinity_residual
— Methodalkalinity_residual(H, p)
Returns the difference between total alkalinity computed from H
(hydrogen ion concentration),
DIC,
borate,
sulfate,
phosphate,
silicate, and
fluorideconcentration and chemical equilibrium constants specified in
p, and the specified total
Alk`alinity.
TAlk = [HCO₃⁻] + 2[CO₃²⁻] + [B(OH)₄⁻] + [OH⁻] + [HPO₄²⁻] + 2[PO₄³⁻] + [SiO(OH)₃⁻]
+ [NH₃] + [HS⁻] - [H⁺] - [HSO₄⁻] - [HF] - [H₃PO₄] + minor acids and bases
Concentrations diagnosed as specified in Dickson et. al best practice descried in CarbonChemistry
docstring.
Note ammonia (NH₃) is not currently included.
Light Attenuation Models
OceanBioME.Light
— ModuleLight attenuation by chlorophyll as described by Karleskind et al. (2011) (implemented as TwoBand) and Morel (1988) (as MultiBand).
OceanBioME.Light.MultiBandPhotosyntheticallyActiveRadiation
— TypeMultiBandPhotosyntheticallyActiveRadiation{F, FN, K, E, C, SPAR, SPARD}
Light attenuation model with multiple wave length bands where each band (i) is attenuated like:
∂PARᵢ(z)/∂z = PARᵢ(kʷ(i) + χ(i)Chl(z)ᵉ⁽ⁱ⁾)
Where kʷ(i) is the band specific water attenuation coefficient, e(i) the chlorophyll exponent, and χ(i) the chlorophyll attenuation coefficient.
When the fields are called with biogeochemical_auxiliary_fields
an additional field named PAR
is also returned which is a sum of the bands.
OceanBioME.Light.MultiBandPhotosyntheticallyActiveRadiation
— MethodMultiBandPhotosyntheticallyActiveRadiation(; grid,
bands = ((400, 500), (500, 600), (600, 700)), #nm
base_bands = MOREL_λ,
base_water_attenuation_coefficient = MOREL_kʷ,
base_chlorophyll_exponent = MOREL_e,
base_chlorophyll_attenuation_coefficient = MOREL_χ,
field_names = [par_symbol(n, length(bands)) for n in 1:length(bands)],
surface_PAR = default_surface_PAR)
Returns a MultiBandPhotosyntheticallyActiveRadiation
attenuation model of surface_PAR
in divided into bands
by surface_PAR_division
.
The attenuation morelcoefficients are computed from `basewaterattenuationcoefficient,
basechlorophyllexponent, and
basechlorophyllattenuationcoefficientwhich should be arrays of the coefficients at
basebands` wavelengths.
The returned field_names
default to PAR₁
, PAR₂
, etc., but may be specified by the user instead.
Keyword Arguments
grid
: grid for building the model onwater_red_attenuation
, ...,phytoplankton_chlorophyll_ratio
: parameter valuessurface_PAR
: function (or array in the future) for the photosynthetically available radiation at the surface, which should bef(x, y, t)
wherex
andy
are the native coordinates (i.e. meters for rectilinear grids and latitude/longitude as appropriate)
OceanBioME.Light.TwoBandPhotosyntheticallyActiveRadiation
— MethodTwoBandPhotosyntheticallyActiveRadiation(; grid,
water_red_attenuation::FT = 0.225, # 1/m
water_blue_attenuation::FT = 0.0232, # 1/m
chlorophyll_red_attenuation::FT = 0.037, # 1/(m * (mgChl/m³) ^ eʳ)
chlorophyll_blue_attenuation::FT = 0.074, # 1/(m * (mgChl/m³) ^ eᵇ)
chlorophyll_red_exponent::FT = 0.629,
chlorophyll_blue_exponent::FT = 0.674,
pigment_ratio::FT = 0.7,
phytoplankton_chlorophyll_ratio::FT = 1.31,
surface_PAR::SPAR = default_surface_PAR)
Keyword Arguments
grid
: grid for building the model onwater_red_attenuation
, ...,phytoplankton_chlorophyll_ratio
: parameter valuessurface_PAR
: function (or array in the future) for the photosynthetically available radiation at the surface, which should bef(x, y, t)
wherex
andy
are the native coordinates (i.e. meters for rectilinear grids and latitude/longitude as appropriate)
Sediments
OceanBioME.Models.Sediments.InstantRemineralisation
— Typestruct InstantRemineralisation
Hold the parameters and fields the simplest benthic boundary layer where organic carbon is assumed to remineralise instantly with some portion becoming N, and a fraction being permanently buried.
Burial efficiency from Dunne et al. (2007).
OceanBioME.Models.Sediments.InstantRemineralisation
— MethodInstantRemineralisation(; grid,
burial_efficiency_constant1::FT = 0.013,
burial_efficiency_constant2::FT = 0.53,
burial_efficiency_half_saturation::FT = 7)
Return a single-layer instant remineralisaiton model for NPZD bgc models.
Example
using OceanBioME, Oceananigans, OceanBioME.Sediments
grid = RectilinearGrid(size=(3, 3, 30), extent=(10, 10, 200))
sediment_model = InstantRemineralisation(; grid)
OceanBioME.Models.Sediments.SimpleMultiG
— Typestruct SimpleMultiG
Hold the parameters and fields for a simple "multi G" single-layer sediment model. Based on the Level 3 model described by Soetaert et al. (2000).
OceanBioME.Models.Sediments.SimpleMultiG
— MethodSimpleMultiG(; grid
fast_decay_rate = 2/day,
slow_decay_rate = 0.2/day,
fast_redfield = 0.1509,
slow_redfield = 0.13,
fast_fraction = 0.74,
slow_fraction = 0.26,
refactory_fraction = 0.1,
nitrate_oxidation_params = on_architecture(architecture(grid), [- 1.9785, 0.2261, -0.0615, -0.0289, - 0.36109, - 0.0232]),
denitrification_params = on_architecture(architecture(grid), [- 3.0790, 1.7509, 0.0593, - 0.1923, 0.0604, 0.0662]),
anoxic_params = on_architecture(architecture(grid), [- 3.9476, 2.6269, - 0.2426, -1.3349, 0.1826, - 0.0143]),
solid_dep_params = on_architecture(architecture(grid), [0.233, 0.336, 982.0, - 1.548]))
Return a single-layer "multi G" sediment model (SimpleMultiG
) on grid
, where parameters can be optionally specified.
The model is a single layer (i.e. does not include porous diffusion) model with three classes of sediment organic matter which decay at three different rates (fast, slow, refactory). The nitrification/denitrification/anoxic mineralisation fractions default to the parameterisation of Soetaert et al. 2000; doi:10.1016/S0012-8252(00)00004-0.
This model has not yet been validated or compared to observational data. The variety of degridation processes is likely to be strongly dependent on oxygen availability (see https://bg.copernicus.org/articles/6/1273/2009/bg-6-1273-2009.pdf) so it will therefore be important to also thoroughly validate the oxygen model (also currently limited).
Example
julia> using OceanBioME, Oceananigans, OceanBioME.Sediments
julia> grid = RectilinearGrid(size=(3, 3, 30), extent=(10, 10, 200));
julia> sediment_model = SimpleMultiG(; grid)
┌ Warning: Sediment models are an experimental feature and have not yet been validated.
└ @ OceanBioME.Models.Sediments ~/Documents/Projects/OceanBioME.jl/src/Models/Sediments/simple_multi_G.jl:104
[ Info: This sediment model is currently only compatible with models providing NH₄, NO₃, O₂, and DIC.
Single-layer multi-G sediment model (Float64)
Gas exchange boundary conditions
OceanBioME.Models.GasExchangeModel
— ModuleGasExchangeModel
to solve chemical equilibrium parameterisations
OceanBioME.Models.GasExchangeModel.CarbonDioxideConcentration
— TypeCarbonDioxideConcentration(; carbon_chemistry,
first_virial_coefficient = PolynomialVirialCoefficientForCarbonDioxide(),
cross_viral_coefficient = CrossVirialCoefficientForCarbonDioxide(),
air_pressue = 1 # atm)
Converts fCO₂ to partial pressure as per Dickson, A.G., Sabine, C.L. and Christian, J.R. (2007), Guide to Best Practices for Ocean CO 2 Measurements. PICES Special Publication 3, 191 pp.
OceanBioME.Models.GasExchangeModel.GasExchange
— TypeGasExchange
GasExchange
returns the air-sea flux of a gas betwen water_concentration
and air_concentration
with a transfer_velocity
computed from the temperature (provided later), and the wind_speed
.
transfer_velocity
should behave as a function of wind speed and temperature (i.e. k(u, T)
), water_concentration
a function of c(x, y, t, T, field_dependencies...)
.
water_concentration
, air_concentration
and wind_speed
can either be numbers, functions of the form (x, y, t)
, functions of the form (i, j, grid, clock, model_fields)
if discrete_form
is set to true, or any kind of Field
.
water_concentration
should usually be a [Tracer]Concentration
where is the name of the tracer (you will have to build your own if this is not OxygenConcentration
), or a CarbonDioxideConcentration
which diagnoses the partial pressure of CO₂ in the water.
OceanBioME.Models.GasExchangeModel.PartiallySolubleGas
— TypePartiallySolubleGas(; air_concentration, solubility)
Parameterises the available concentration of a gas dissolving in water in the form $\alpha C_a$ where $lpha$ is the Ostwald solubility coeffieient and $C_a$ is the concentration in the air.
OceanBioME.Models.GasExchangeModel.Wanninkhof92Solubility
— TypeWanninkhof92Solubility
Parameterises the Ostwald solubility coefficient as given in Wanninkhof, 1992.
OceanBioME.Models.GasExchangeModel.CarbonDioxideGasExchangeBoundaryCondition
— MethodCarbonDioxideGasExchangeBoundaryCondition(; carbon_chemistry = CarbonChemistry(),
transfer_velocity = SchmidtScaledTransferVelocity(; schmidt_number = CarbonDioxidePolynomialSchmidtNumber()),
air_concentration = 413, # ppmv
wind_speed = 2,
water_concentration = nothing,
silicate_and_phosphate_names = nothing,
kwargs...)
Returns a FluxBoundaryCondition
for the gas exchange between carbon dioxide dissolved in the water specified by the carbon_chemisty
model, and air_concentration
with transfer_velocity
(see GasExchangeBoundaryCondition
for details).
silicate_and_phosphate_names
should either be nothing
, a Tuple
of symbols specifying the name of the silicate and phosphate tracers, or a
NamedTupleof values for the
carbon_chemistry` model.
kwargs
are passed on to GasExchangeBoundaryCondition
.
Note: The model always requires T
, S
, DIC
, and Alk
to be present in the model.
OceanBioME.Models.GasExchangeModel.CarbonDioxidePolynomialSchmidtNumber
— MethodCarbonDioxidePolynomialSchmidtNumber(; a = 2116.8, b = -136.25, c = 4.7353, d = -0.092307, e = 0.0007555)
Schmidt number parameterisation Wanninkhof, 2014 for sea water
OceanBioME.Models.GasExchangeModel.GasExchangeBoundaryCondition
— MethodGasExchangeBoundaryCondition(; water_concentration,
air_concentration,
transfer_velocity,
wind_speed)
Returns a FluxBoundaryCondition
for the gas exchange between water_concentration
and air_concentration
with transfer_velocity
.
water_concentration
, air_concentration
and wind_speed
can either be numbers, functions of the form (x, y, t)
, functions of the form (i, j, grid, clock, model_fields)
if discrete_form
is set to true, or any kind of Field
.
water_concentration
should usually be a [Tracer]Concentration
where is the name of the tracer (you will have to build your own if this is not OxygenConcentration
), or a CarbonDioxideConcentration
which diagnoses the partial pressure of CO₂ in the water.
transfer_velocity
should be a function of the form k(u₁₀, T)
.
OceanBioME.Models.GasExchangeModel.OxygenGasExchangeBoundaryCondition
— MethodOxygenGasExchangeBoundaryCondition(; transfer_velocity = SchmidtScaledTransferVelocity(; schmidt_number = OxygenPolynomialSchmidtNumber()),
water_concentration = OxygenConcentration(),
air_concentration = 9352.7, # mmolO₂/m³
wind_speed = 2,
kwagrs...)
Returns a FluxBoundaryCondition
for the gas exchange between oxygen dissolved in the water specified by the the OxygenConcentration
in the base model, and air_concentration
with transfer_velocity
(see GasExchangeBoundaryCondition
for details).
kwargs
are passed on to GasExchangeBoundaryCondition
.
OceanBioME.Models.GasExchangeModel.OxygenPolynomialSchmidtNumber
— MethodOxygenPolynomialSchmidtNumber(; a = 1953.4, b = - 128.0, c = 3.9918, d = -0.050091)
Schmidt number parameterisation Wanninkhof, 2014 for sea water
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.SchmidtScaledTransferVelocity
— TypeSchmidtScaledTransferVelocity(; schmidt_number,
base_transfer_velocity = Ho06())
Returns a model for gas transfer velocity which depends on the u₁₀
, the 10m-wind, and T
emperature. The model is of the typical form:
k(u₁₀, T) = k₆₆₀(u₁₀) √(660/Sc(T))
The base_transfer_velocity
(k₆₆₀) is typically an empirically derived gas transfer velocity normalised by the Scmidt number for CO₂ at 20°C (660), and the schmidt_number
(Sc) is a parameterisation of the gas specific Schmidt number.
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.CCMP2
— FunctionCCMP2(scale_factor = 0.256789 / hour / 100)
Quadratic k₆₆₀ parameterisation calibrated to give 16.5 cm/hr global average (reccomended Naegler, 2009) for the CCMP2 wind product by SeaFlux/Luke Gregor et al. (2023).
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.ERA5
— FunctionERA5(scale_factor = 0.270875 / hour / 100)
Quadratic k₆₆₀ parameterisation calibrated to give 16.5 cm/hr global average (reccomended Naegler, 2009) for the ERA5 wind product by SeaFlux/Luke Gregor et al. (2023).
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Ho06
— FunctionHo06(scale_factor = 0.266 / hour / 100)
Quadratic k₆₆₀ parameterisation of Ho et al. (2006) suitable for the QuickSCAT satellite and short-term steady wind product.
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.JRA55
— FunctionJRA55(scale_factor = 0.2601975 / hour / 100)
Quadratic k₆₆₀ parameterisation calibrated to give 16.5 cm/hr global average (reccomended Naegler, 2009) for the JRA55 wind product by SeaFlux/Luke Gregor et al. (2023).
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.McGillis01
— FunctionMcGillis01(constant = 3.3 / hour / 100, cubic = 0.026 / hour / 100)
Cubic k₆₆₀ parameterisation of McGillis et al. (2001) suitable for short term, in situ wind products.
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.NCEP1
— FunctionNCEP1(scale_factor = 0.2866424 / hour / 100)
Quadratic k₆₆₀ parameterisation calibrated to give 16.5 cm/hr global average (reccomended Naegler, 2009) for the NCEP1 wind product by SeaFlux/Luke Gregor et al. (2023).
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Nightingale00
— FunctionNightingale00(linear = 0.333 / hour / 100, quadratic = 0.222 / hour / 100)
Cubic k₆₆₀ parameterisation of Nightingale et al. (2000) suitable for short term, in situ wind products (?).
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Sweeny07
— FunctionSweeny07(scale_factor = 0.27 / hour / 100)
Quadratic k₆₆₀ parameterisation of Sweeny et al. (2007) suitable for the NCEP/NCAR reanalysis 1 product
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Wanninkhof09
— FunctionWanninkhof09(constant = 3 / hour / 100, linear = 0.1 / hour / 100, quadratic = 0.064 / hour / 100, cubic = 0.011 / hour / 100)
Cubic k₆₆₀ parameterisation of Wanninkhof et al (2009) suitable for the Cross-Calibrated Multi-Platform (CCMP) Winds product
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Wanninkhof14
— FunctionWanninkhof14(scale_factor = 0.251 / hour / 100)
Quadratic k₆₆₀ parameterisation of Wanninkhof et al (2014) suitable for the Cross-Calibrated Multi-Platform (CCMP) Winds product
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Wanninkhof99
— FunctionWanninkhof99(scale_factor = 0.0283 / hour / 100)
Cubic k₆₆₀ parameterisation of Wanninkhof & McGillis (1999) suitable for short term, in situ wind products.
Box Model
OceanBioME.BoxModels
— ModuleIntegrate biogeochemical models on a single point
OceanBioME.BoxModels.BoxModel
— MethodBoxModel(; biogeochemistry,
forcing = NamedTuple(),
timestepper = :RungeKutta3,
clock = Clock(; time = 0.0),
prescribed_tracers::PT = (T = (t) -> 0, ))
Constructs a box model of a biogeochemistry
model. Once this has been constructed you can set initial condiitons by set!(model, X=1.0...)
.
Keyword Arguments
biogeochemistry
: (required) an OceanBioME biogeochemical model, most models must be passed agrid
which can be set to aBoxModelGrid
for box modelsforcing
: NamedTuple of additional forcing functions for the biogeochemical tracers to be integratedtimestepper
: Timestepper to integrate modelclock
: Oceananigans clock to keep track of timeprescribed_tracers
: named tuple of tracer names and function (f(t)
) prescribing tracer values
Oceananigans.Fields.set!
— Methodset!(model::BoxModel; kwargs...)
Set the values
for a BoxModel
Arguments
model
- the model to set the arguments for
Keyword Arguments
- variables and value pairs to set
Oceananigans.TimeSteppers.store_tendencies!
— MethodStore previous source terms before updating them.