Biogeochemistry in submesoscale eddies in the Eady model

In this example we setup a 3D model with a constant background buoyancy gradient with associated thermal wind (the Eady model) with the LOBSTER biogeochemical model. This example demonstrates how to use biogeochemistry in a more complicated physical model. The parameters in this example correspond roughly to those used by Taylor (2016) and result to the generation of a single submesoscale eddy.

Install dependencies

First we ensure we have the required dependencies installed

using Pkg
pkg "add OceanBioME, Oceananigans, CairoMakie"

Model setup

We load the required packages. Although not required, we also set the random seed to ensure reproducibility of the results.

using OceanBioME, Oceananigans, Printf
using Oceananigans.Units

using Random
Random.seed!(11)
Random.TaskLocalRNG()

Construct a grid with uniform grid spacing.

grid = RectilinearGrid(size = (32, 32, 8), extent = (1kilometer, 1kilometer, 100meters))
32×32×8 RectilinearGrid{Float64, Oceananigans.Grids.Periodic, Oceananigans.Grids.Periodic, Oceananigans.Grids.Bounded} on Oceananigans.Architectures.CPU with 3×3×3 halo
├── Periodic x ∈ [0.0, 1000.0) regularly spaced with Δx=31.25
├── Periodic y ∈ [0.0, 1000.0) regularly spaced with Δy=31.25
└── Bounded  z ∈ [-100.0, 0.0] regularly spaced with Δz=12.5

Set the Coriolis and buoyancy models.

coriolis = FPlane(f = 1e-4) # [s⁻¹]
buoyancy = SeawaterBuoyancy()
SeawaterBuoyancy{Float64}:
├── gravitational_acceleration: 9.80665
└── equation_of_state: LinearEquationOfState(thermal_expansion=0.000167, haline_contraction=0.00078)

Specify parameters that are used to construct the background state.

background_state_parameters = (M = 1e-4,       # s⁻¹, geostrophic shear
                               f = coriolis.f, # s⁻¹, Coriolis parameter
                               N = 1e-4,       # s⁻¹, buoyancy frequency
                               H = grid.Lz,
                               g = buoyancy.gravitational_acceleration,
                               α = buoyancy.equation_of_state.thermal_expansion)
(M = 0.0001, f = 0.0001, N = 0.0001, H = 100.0, g = 9.80665, α = 0.000167)

We assume a background buoyancy $B$ with a constant stratification and also a constant lateral gradient (in the zonal direction). The background velocity components $U$ and $V$ are prescribed so that the thermal wind relationship is satisfied, that is, $f \partial_z U = - \partial_y B$ and $f \partial_z V = \partial_x B$.

T(x, y, z, t, p) = (p.M^2 * x + p.N^2 * (z + p.H)) / (p.g * p.α)
V(x, y, z, t, p) = p.M^2 / p.f * (z + p.H)

V_field = BackgroundField(V, parameters = background_state_parameters)
T_field = BackgroundField(T, parameters = background_state_parameters)
BackgroundField{typeof(Main.var"##227".T), @NamedTuple{M::Float64, f::Float64, N::Float64, H::Float64, g::Float64, α::Float64}}
├── func: T (generic function with 1 method)
└── parameters: (M = 0.0001, f = 0.0001, N = 0.0001, H = 100.0, g = 9.80665, α = 0.000167)

Specify some horizontal and vertical viscosity and diffusivity.

νᵥ = κᵥ = 1e-4 # [m² s⁻¹]
vertical_diffusivity = VerticalScalarDiffusivity(ν = νᵥ, κ = κᵥ)
VerticalScalarDiffusivity{ExplicitTimeDiscretization}(ν=0.0001, κ=0.0001)

Setup the biogeochemical model with optional carbonate chemistry turned on.

biogeochemistry = LOBSTER(; grid,
                            carbonates = true,
                            open_bottom = true)

DIC_bcs = FieldBoundaryConditions(top = CarbonDioxideGasExchangeBoundaryCondition())
Oceananigans.FieldBoundaryConditions, with boundary conditions
├── west: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)
├── east: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)
├── south: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)
├── north: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)
├── bottom: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)
├── top: FluxBoundaryCondition: DiscreteBoundaryFunction with (::GasExchange{Float64, OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.SchmidtScaledTransferVelocity{OceanBioME.Models.GasExchangeModel.PolynomialParameterisation{2, Tuple{Float64, Float64, Float64}}, OceanBioME.Models.GasExchangeModel.PolynomialParameterisation{4, NTuple{5, Float64}}}, OceanBioME.Models.GasExchangeModel.CarbonDioxideConcentration{CarbonChemistry{OceanBioME.Models.CarbonChemistryModel.K0{Float64}, @NamedTuple{K1::OceanBioME.Models.CarbonChemistryModel.K1{Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}, K2::OceanBioME.Models.CarbonChemistryModel.K2{Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}}, OceanBioME.Models.CarbonChemistryModel.KB{Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}, OceanBioME.Models.CarbonChemistryModel.KS{OceanBioME.Models.CarbonChemistryModel.IonicStrength{Float64}, Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}, OceanBioME.Models.CarbonChemistryModel.KF{OceanBioME.Models.CarbonChemistryModel.IonicStrength{Float64}, OceanBioME.Models.CarbonChemistryModel.KS{OceanBioME.Models.CarbonChemistryModel.IonicStrength{Float64}, Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}, Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}, @NamedTuple{KP1::OceanBioME.Models.CarbonChemistryModel.KP{Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}, KP2::OceanBioME.Models.CarbonChemistryModel.KP{Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}, KP3::OceanBioME.Models.CarbonChemistryModel.KP{Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}}, OceanBioME.Models.CarbonChemistryModel.KSi{OceanBioME.Models.CarbonChemistryModel.IonicStrength{Float64}, Float64}, OceanBioME.Models.CarbonChemistryModel.KW{Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}, OceanBioME.Models.CarbonChemistryModel.IonicStrength{Float64}, OceanBioME.Models.CarbonChemistryModel.KSP{Float64, OceanBioME.Models.CarbonChemistryModel.PressureCorrection{Float64}}, typeof(OceanBioME.Models.teos10_polynomial_approximation)}, OceanBioME.Models.GasExchangeModel.PolynomialVirialCoefficientForCarbonDioxide{Float64}, OceanBioME.Models.GasExchangeModel.CrossVirialCoefficientForCarbonDioxide{Float64}, Float64, Nothing}, Float64})
└── immersed: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)

Model instantiation

model = NonhydrostaticModel(; grid,
                              biogeochemistry,
                              boundary_conditions = (DIC = DIC_bcs, ),
                              advection = WENO(),
                              timestepper = :RungeKutta3,
                              coriolis,
                              tracers = (:T, :S),
                              buoyancy,
                              background_fields = (T = T_field, v = V_field),
                              closure = vertical_diffusivity)
NonhydrostaticModel{CPU, RectilinearGrid}(time = 0 seconds, iteration = 0)
├── grid: 32×32×8 RectilinearGrid{Float64, Oceananigans.Grids.Periodic, Oceananigans.Grids.Periodic, Oceananigans.Grids.Bounded} on Oceananigans.Architectures.CPU with 3×3×3 halo
├── timestepper: RungeKutta3TimeStepper
├── advection scheme: WENO{3, Float64, Float32}(order=5)
├── tracers: (T, S, NO₃, NH₄, P, Z, sPOM, bPOM, DOM, DIC, Alk)
├── closure: VerticalScalarDiffusivity{ExplicitTimeDiscretization}(ν=0.0001, κ=(T=0.0001, S=0.0001, NO₃=0.0001, NH₄=0.0001, P=0.0001, Z=0.0001, sPOM=0.0001, bPOM=0.0001, DOM=0.0001, DIC=0.0001, Alk=0.0001))
├── buoyancy: SeawaterBuoyancy with g=9.80665 and LinearEquationOfState(thermal_expansion=0.000167, haline_contraction=0.00078) with ĝ = NegativeZDirection()
└── coriolis: FPlane{Float64}(f=0.0001)

Initial conditions

Start with a bit of random noise added to the background thermal wind and an arbitary biogeochemical state.

Ξ(z) = randn() * z / grid.Lz * (z / grid.Lz + 1)

Ũ = 1e-3
uᵢ(x, y, z) = Ũ * Ξ(z)
vᵢ(x, y, z) = Ũ * Ξ(z)

set!(model, u=uᵢ, v=vᵢ, P = 0.03, Z = 0.03, NO₃ = 4.0, NH₄ = 0.05, DIC = 2200.0, Alk = 2409.0, S = 35, T = 20)

Setup the simulation

Choose an appropriate initial timestep for this resolution and set up the simulation

Δx = minimum_xspacing(grid, Center(), Center(), Center())
Δy = minimum_yspacing(grid, Center(), Center(), Center())
Δz = minimum_zspacing(grid, Center(), Center(), Center())

Δt₀ = 0.75 * min(Δx, Δy, Δz) / V(0, 0, 0, 0, background_state_parameters)

simulation = Simulation(model, Δt = Δt₀, stop_time = 10days)
Simulation of NonhydrostaticModel{CPU, RectilinearGrid}(time = 0 seconds, iteration = 0)
├── Next time step: 15.625 minutes
├── Elapsed wall time: 0 seconds
├── Wall time per iteration: NaN days
├── Stop time: 10 days
├── Stop iteration: Inf
├── Wall time limit: Inf
├── Minimum relative step: 0.0
├── Callbacks: OrderedDict with 4 entries:
│   ├── stop_time_exceeded => 4
│   ├── stop_iteration_exceeded => -
│   ├── wall_time_limit_exceeded => e
│   └── nan_checker => }
├── Output writers: OrderedDict with no entries
└── Diagnostics: OrderedDict with no entries

Adapt the time step while keeping the CFL number fixed.

wizard = TimeStepWizard(cfl = 0.75, diffusive_cfl = 0.75, max_Δt = 30minutes)
simulation.callbacks[:wizard] = Callback(wizard, IterationInterval(5))

Create a progress message.

progress(sim) = @printf("i: % 6d, sim time: % 10s, wall time: % 10s, Δt: % 10s, CFL: %.2e\n",
                        sim.model.clock.iteration,
                        prettytime(sim.model.clock.time),
                        prettytime(sim.run_wall_time),
                        prettytime(sim.Δt),
                        AdvectiveCFL(sim.Δt)(sim.model))

simulation.callbacks[:progress] = Callback(progress, IterationInterval(20))
Callback of progress on IterationInterval(20)

Here, we add some diagnostics to calculate and output.

u, v, w = model.velocities # unpack velocity `Field`s
NamedTuple with 3 Fields on 32×32×8 RectilinearGrid{Float64, Oceananigans.Grids.Periodic, Oceananigans.Grids.Periodic, Oceananigans.Grids.Bounded} on Oceananigans.Architectures.CPU with 3×3×3 halo:
├── u: 32×32×8 Field{Oceananigans.Grids.Face, Oceananigans.Grids.Center, Oceananigans.Grids.Center} on RectilinearGrid on Oceananigans.Architectures.CPU
├── v: 32×32×8 Field{Oceananigans.Grids.Center, Oceananigans.Grids.Face, Oceananigans.Grids.Center} on RectilinearGrid on Oceananigans.Architectures.CPU
└── w: 32×32×9 Field{Oceananigans.Grids.Center, Oceananigans.Grids.Center, Oceananigans.Grids.Face} on RectilinearGrid on Oceananigans.Architectures.CPU

and also calculate the vertical vorticity.

ζ = Field(∂x(v) - ∂y(u))
32×32×8 Field{Oceananigans.Grids.Face, Oceananigans.Grids.Face, Oceananigans.Grids.Center} on RectilinearGrid on Oceananigans.Architectures.CPU
├── grid: 32×32×8 RectilinearGrid{Float64, Oceananigans.Grids.Periodic, Oceananigans.Grids.Periodic, Oceananigans.Grids.Bounded} on Oceananigans.Architectures.CPU with 3×3×3 halo
├── boundary conditions: FieldBoundaryConditions
│   └── west: Periodic, east: Periodic, south: Periodic, north: Periodic, bottom: ZeroFlux, top: ZeroFlux, immersed: Nothing
├── operand: BinaryOperation at (Face, Face, Center)
├── status: time=0.0
└── data: 38×38×14 OffsetArray(::Array{Float64, 3}, -2:35, -2:35, -2:11) with eltype Float64 with indices -2:35×-2:35×-2:11
    └── max=5.35045e-5, min=-4.94356e-5, mean=-2.33679e-23

Periodically save the velocities and vorticity to a file.

simulation.output_writers[:fields] = JLD2Writer(model, merge(model.tracers, (; u, v, w, ζ));
                                                schedule = TimeInterval(2hours),
                                                filename = "eady_turbulence_bgc",
                                                overwrite_existing = true)

Run the simulation

run!(simulation)
[ Info: Initializing simulation...
i:      0, sim time:  0 seconds, wall time:  0 seconds, Δt: 17.188 minutes, CFL: 3.27e-01
[ Info:     ... simulation initialization complete (30.687 seconds)
[ Info: Executing initial time step...
[ Info:     ... initial time step complete (15.046 seconds).
i:     20, sim time:    6 hours, wall time: 47.038 seconds, Δt: 25.164 minutes, CFL: 4.74e-01
i:     40, sim time:   15 hours, wall time: 47.994 seconds, Δt: 30 minutes, CFL: 5.77e-01
i:     60, sim time: 1.042 days, wall time: 48.945 seconds, Δt: 30 minutes, CFL: 6.12e-01
i:     80, sim time: 1.458 days, wall time: 49.886 seconds, Δt: 30 minutes, CFL: 6.33e-01
i:    100, sim time: 1.875 days, wall time: 50.832 seconds, Δt: 30 minutes, CFL: 6.69e-01
i:    120, sim time: 2.292 days, wall time: 51.773 seconds, Δt: 29.577 minutes, CFL: 7.50e-01
i:    140, sim time: 2.621 days, wall time: 52.717 seconds, Δt: 26.294 minutes, CFL: 7.50e-01
i:    160, sim time: 2.933 days, wall time: 53.645 seconds, Δt: 23.119 minutes, CFL: 7.50e-01
i:    180, sim time: 3.196 days, wall time: 54.578 seconds, Δt: 20.903 minutes, CFL: 7.50e-01
i:    200, sim time: 3.459 days, wall time: 55.421 seconds, Δt: 19.497 minutes, CFL: 7.50e-01
i:    220, sim time: 3.692 days, wall time: 56.284 seconds, Δt: 17.453 minutes, CFL: 7.50e-01
i:    240, sim time: 3.912 days, wall time: 57.130 seconds, Δt: 15.802 minutes, CFL: 7.50e-01
i:    260, sim time: 4.103 days, wall time: 58.047 seconds, Δt: 13.633 minutes, CFL: 7.50e-01
i:    280, sim time: 4.277 days, wall time: 58.936 seconds, Δt: 12.955 minutes, CFL: 7.50e-01
i:    300, sim time: 4.444 days, wall time: 59.852 seconds, Δt: 12.758 minutes, CFL: 7.50e-01
i:    320, sim time: 4.611 days, wall time: 1.013 minutes, Δt: 13.516 minutes, CFL: 7.50e-01
i:    340, sim time: 4.796 days, wall time: 1.028 minutes, Δt: 13.001 minutes, CFL: 7.50e-01
i:    360, sim time: 4.958 days, wall time: 1.044 minutes, Δt: 11.774 minutes, CFL: 7.50e-01
i:    380, sim time: 5.107 days, wall time: 1.059 minutes, Δt: 11.085 minutes, CFL: 7.50e-01
i:    400, sim time: 5.258 days, wall time: 1.075 minutes, Δt: 11.009 minutes, CFL: 7.50e-01
i:    420, sim time: 5.411 days, wall time: 1.090 minutes, Δt: 11.242 minutes, CFL: 7.50e-01
i:    440, sim time: 5.553 days, wall time: 1.106 minutes, Δt: 10.848 minutes, CFL: 7.50e-01
i:    460, sim time: 5.689 days, wall time: 1.121 minutes, Δt: 10.594 minutes, CFL: 7.50e-01
i:    480, sim time: 5.831 days, wall time: 1.135 minutes, Δt: 10.474 minutes, CFL: 7.50e-01
i:    500, sim time: 5.967 days, wall time: 1.151 minutes, Δt: 10.327 minutes, CFL: 7.50e-01
i:    520, sim time: 6.105 days, wall time: 1.166 minutes, Δt: 10.246 minutes, CFL: 7.50e-01
i:    540, sim time: 6.244 days, wall time: 1.181 minutes, Δt: 10.159 minutes, CFL: 7.50e-01
i:    560, sim time: 6.384 days, wall time: 1.197 minutes, Δt: 10.530 minutes, CFL: 7.50e-01
i:    580, sim time: 6.522 days, wall time: 1.212 minutes, Δt: 10.866 minutes, CFL: 7.50e-01
i:    600, sim time: 6.664 days, wall time: 1.226 minutes, Δt: 10.383 minutes, CFL: 7.50e-01
i:    620, sim time: 6.794 days, wall time: 1.241 minutes, Δt: 10.531 minutes, CFL: 7.50e-01
i:    640, sim time: 6.924 days, wall time: 1.256 minutes, Δt: 10.623 minutes, CFL: 7.50e-01
i:    660, sim time: 7.067 days, wall time: 1.271 minutes, Δt: 10.612 minutes, CFL: 7.50e-01
i:    680, sim time: 7.204 days, wall time: 1.287 minutes, Δt: 10.777 minutes, CFL: 7.50e-01
i:    700, sim time: 7.341 days, wall time: 1.302 minutes, Δt: 10.789 minutes, CFL: 7.50e-01
i:    720, sim time: 7.485 days, wall time: 1.317 minutes, Δt: 11.004 minutes, CFL: 7.50e-01
i:    740, sim time: 7.626 days, wall time: 1.333 minutes, Δt: 9.836 minutes, CFL: 7.50e-01
i:    760, sim time: 7.756 days, wall time: 1.348 minutes, Δt: 8.779 minutes, CFL: 7.50e-01
i:    780, sim time: 7.876 days, wall time: 1.363 minutes, Δt: 8.625 minutes, CFL: 7.50e-01
i:    800, sim time: 7.995 days, wall time: 1.377 minutes, Δt: 8.748 minutes, CFL: 7.50e-01
i:    820, sim time: 8.115 days, wall time: 1.392 minutes, Δt: 9.076 minutes, CFL: 7.50e-01
i:    840, sim time: 8.240 days, wall time: 1.407 minutes, Δt: 9.916 minutes, CFL: 7.50e-01
i:    860, sim time: 8.379 days, wall time: 1.422 minutes, Δt: 10.973 minutes, CFL: 7.50e-01
i:    880, sim time: 8.531 days, wall time: 1.438 minutes, Δt: 10.690 minutes, CFL: 7.50e-01
i:    900, sim time: 8.667 days, wall time: 1.453 minutes, Δt: 9.917 minutes, CFL: 7.50e-01
i:    920, sim time: 8.798 days, wall time: 1.469 minutes, Δt: 10.134 minutes, CFL: 7.50e-01
i:    940, sim time: 8.931 days, wall time: 1.484 minutes, Δt: 9.879 minutes, CFL: 7.50e-01
i:    960, sim time: 9.060 days, wall time: 1.499 minutes, Δt: 9.580 minutes, CFL: 7.50e-01
i:    980, sim time: 9.187 days, wall time: 1.515 minutes, Δt: 9.717 minutes, CFL: 7.50e-01
i:   1000, sim time: 9.321 days, wall time: 1.530 minutes, Δt: 10.580 minutes, CFL: 7.50e-01
i:   1020, sim time: 9.460 days, wall time: 1.545 minutes, Δt: 10.306 minutes, CFL: 7.50e-01
i:   1040, sim time: 9.597 days, wall time: 1.561 minutes, Δt: 10.076 minutes, CFL: 7.50e-01
i:   1060, sim time: 9.736 days, wall time: 1.576 minutes, Δt: 9.980 minutes, CFL: 7.50e-01
i:   1080, sim time: 9.861 days, wall time: 1.591 minutes, Δt: 9.886 minutes, CFL: 7.50e-01
i:   1100, sim time: 9.992 days, wall time: 1.606 minutes, Δt: 9.821 minutes, CFL: 7.50e-01
[ Info: Simulation is stopping after running for 1.608 minutes.
[ Info: Simulation time 10 days equals or exceeds stop time 10 days.

Now load the saved output,

  ζ = FieldTimeSeries("eady_turbulence_bgc.jld2", "ζ")
  P = FieldTimeSeries("eady_turbulence_bgc.jld2", "P")
NO₃ = FieldTimeSeries("eady_turbulence_bgc.jld2", "NO₃")
NH₄ = FieldTimeSeries("eady_turbulence_bgc.jld2", "NH₄")
DIC = FieldTimeSeries("eady_turbulence_bgc.jld2", "DIC")

times = ζ.times

xζ, yζ, zζ = nodes(ζ)
xc, yc, zc = nodes(P)

and plot.

using CairoMakie

n = Observable(1)

  ζₙ = @lift interior(  ζ[$n], :, :, grid.Nz)
  Nₙ = @lift interior(NO₃[$n], :, :, grid.Nz) .+ interior(NH₄[$n], :, :, grid.Nz)
  Pₙ = @lift interior(  P[$n], :, :, grid.Nz)
DICₙ = @lift interior(DIC[$n], :, :, grid.Nz)

fig = Figure(size = (1600, 1600), fontsize = 20)

lims = [(minimum(T), maximum(T)) for T in (  ζ[:, :, grid.Nz, :],
                                           NO₃[:, :, grid.Nz, :] .+ NH₄[:, :, grid.Nz, :],
                                             P[:, :, grid.Nz, :],
                                           DIC[:, :, grid.Nz, :])]

axis_kwargs = (xlabel = "x (m)", ylabel = "y (m)", aspect = DataAspect())

ax1 = Axis(fig[1, 1]; title = "Vertical vorticity (1 / s)", axis_kwargs...)
hm1 = heatmap!(ax1, xζ, yζ, ζₙ, colormap = :balance, colorrange = lims[1])
Colorbar(fig[1, 2], hm1)

ax2 = Axis(fig[1, 3]; title = "Nutrient (NO₃ + NH₄) concentration (mmol N / m³)", axis_kwargs...)
hm2 = heatmap!(ax2, xc, yc, Nₙ, colormap = Reverse(:bamako), colorrange = lims[2])
Colorbar(fig[1, 4], hm2)

ax3 = Axis(fig[2, 1]; title = "Phytoplankton concentration (mmol N / m³)", axis_kwargs...)
hm3 = heatmap!(ax3, xc, yc, Pₙ, colormap = Reverse(:batlow), colorrange = lims[3])
Colorbar(fig[2, 2], hm3)

ax4 = Axis(fig[2, 3]; title = "Dissolved inorganic carbon (mmol C / m³)", axis_kwargs...)
hm4 = heatmap!(ax4, xc, yc, DICₙ, colormap = Reverse(:devon), colorrange = lims[4])
Colorbar(fig[2, 4], hm4)

title = @lift "t = $(prettytime(times[$n]))"
Label(fig[0, :], title, fontsize = 30)

record(fig, "eady.mp4", 1:length(times), framerate = 12) do i
    n[] = i
end


This page was generated using Literate.jl.