Library
Documenting the user interface.
OceanBioME.jl
OceanBioME.OceanBioME — ModuleA fast and flexible modelling environment for modelling the coupled interactions between ocean biogeochemistry, carbonate chemistry, and physics.
OceanBioME.CBMDayLength — Type(day_length::CBMDayLength)(t, φ)Returns the length of day in seconds at the latitude φ, t seconds after the start of the year.
OceanBioME.ScaleNegativeTracers — MethodScaleNegativeTracers(; tracers, scalefactors = ones(length(tracers)), warn = false, invalid_fill_value = NaN)Constructs a modifier to scale tracers so that none are negative. Use like:
modifier = ScaleNegativeTracers((:P, :Z, :N))
biogeochemistry = Biogeochemistry(...; modifier)This method is better, though still imperfect, method to prevent numerical errors that lead to negative tracer values compared to ZeroNegativeTracers. Please see discussion in github.
Future plans include implement a positivity-preserving timestepping scheme as the ideal alternative.
~~If warn is true then scaling will raise a warning.~~
invalid_fill_value specifies the value to set the total cell content to if the total is less than 0 (meaning that total tracer conservation can not be enforced). If the value is set to anything other than NaN this scheme no longer conserves mass. While this may be useful to prevent spurious numerics leading to crashing care should be taken that the mass doesn't deviate too much.
This scheme is similar to that used by NEMO-PISCES, although they scale the tendency rather than the value, while other Earth system models simply set negative tracers to zero, for example NCAR's MARBL and NEMO-TOPAZ2, which does not conserve mass. More complicated schemes exist, for example ROMS-BECS uses an implicite-itterative approach where each component is updated in sequence to garantee mass conservation, possibly at the expense of numerical precision.
OceanBioME.ScaleNegativeTracers — MethodScaleNegativeTracers(bgc::AbstractBiogeochemistry; warn = false)Construct a modifier to scale the conserved tracers in bgc biogeochemistry.
If warn is true then scaling will raise a warning.
OceanBioME.ZeroNegativeTracers — TypeZeroNegativeTracers(; exclude = ())Construct a modifier that zeroes any negative tracers excluding those listed in exclude.
OceanBioME.Biogeochemistry — MethodBiogeochemistry(underlying_biogeochemistry;
light_attenuation = nothing,
sediment = nothing,
particles = nothing,
modifiers = nothing)Construct a biogeochemical model based on underlying_biogeochemistry which may have a light_attenuation model, sediment, particles, and modifiers.
Keyword Arguments
light_attenuation_model: light attenuation model which integrated the attenuation of available lightsediment_model: slot forAbstractSedimentparticles: slot forBiogeochemicalParticlesmodifiers: slot for components which modify the biogeochemistry when the tendencies have been calculated or when the state is updated
OceanBioME.conserved_tracers — Methodconserved_tracers(model::UnderlyingBiogeochemicalModel, args...; kwargs...)Returns the names of tracers which together are conserved in model
OceanBioME.redfield — Methodredfield(i, j, k, val_tracer_name, bgc, tracers)Returns the redfield ratio of tracer_name from bgc at i, j, k.
OceanBioME.redfield — Methodredfield(val_tracer_name, bgc)
redfield(val_tracer_name, bgc, tracers)Returns the redfield ratio of tracer_name from bgc when it is constant across the domain.
Biogeochemical Models
Nutrient Phytoplankton Zooplankton Detritus (NPZD)
OceanBioME.Models.NPZDModel — ModuleNutrient-Phytoplankton-Zooplankton-Detritus model of Kuhn et al. (2015).
Tracers
- Nutrients: N (mmol N/m³)
- Phytoplankton: P (mmol N/m³)
- Zooplankton: Z (mmol N/m³)
- Detritus: D (mmol N/m³)
Required submodels
- Photosynthetically available radiation: PAR (W/m²)
OceanBioME.Models.NPZDModel.NutrientPhytoplanktonZooplanktonDetritus — MethodNutrientPhytoplanktonZooplanktonDetritus(; grid::AbstractGrid{FT},
initial_photosynthetic_slope::FT = 0.1953 / day, # 1/(W/m²)/s
base_maximum_growth::FT = 0.6989 / day, # 1/s
nutrient_half_saturation::FT = 2.3868, # mmol N/m³
base_respiration_rate::FT = 0.066 / day, # 1/s/(mmol N / m³)
phyto_base_mortality_rate::FT = 0.0101 / day, # 1/s/(mmol N / m³)
maximum_grazing_rate::FT = 2.1522 / day, # 1/s
grazing_half_saturation::FT = 0.5573, # mmol N/m³
assimulation_efficiency::FT = 0.9116,
base_excretion_rate::FT = 0.0102 / day, # 1/s/(mmol N / m³)
zoo_base_mortality_rate::FT = 0.3395 / day, # 1/s/(mmol N / m³)²
remineralization_rate::FT = 0.1213 / day, # 1/s
surface_photosynthetically_active_radiation = default_surface_PAR,
light_attenuation_model::LA =
TwoBandPhotosyntheticallyActiveRadiation(; grid,
surface_PAR = surface_photosynthetically_active_radiation),
sediment_model::S = nothing,
sinking_speeds = (P = 0.2551/day, D = 2.7489/day),
open_bottom::Bool = true,
scale_negatives = false,
particles::P = nothing,
modifiers::M = nothing)Construct a Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) biogeochemical model.
Keyword Arguments
grid: (required) the geometry to build the model on, required to calculate sinkinginitial_photosynthetic_slope, ...,remineralization_rate: NPZD parameter valuessurface_photosynthetically_active_radiation: function (or array in the future) for the photosynthetically available radiation at the surface, should be shapef(x, y, t)light_attenuation_model: light attenuation model which integrated the attenuation of available lightsediment_model: slot forBiogeochemicalSedimentsinking_speed: named tuple of constant sinking, of fields (i.e.ZFaceField(...)) for any tracers which sink (convention is that a sinking speed is positive, but a field will need to follow the usual down being negative)open_bottom: should the sinking velocity be smoothly brought to zero at the bottom to prevent the tracers leaving the domainscale_negatives: scale negative tracers?particles: slot forBiogeochemicalParticlesmodifiers: slot for components which modify the biogeochemistry when the tendencies have been calculated or when the state is updated
Example
julia> using OceanBioME
julia> using Oceananigans
julia> grid = RectilinearGrid(size=(20, 30), extent=(200, 200), topology=(Bounded, Flat, Bounded));
julia> model = NutrientPhytoplanktonZooplanktonDetritus(; grid)
NutrientPhytoplanktonZooplanktonDetritus{Float64} model, with (:P, :D) sinking
Light attenuation: Two-band light attenuation model (Float64)
Sediment: Nothing
Particles: Nothing
Modifiers: NothingThe Lodyc-DAMTP Ocean Biogeochemical Simulation Tools for Ecosystem and Resources (LOBSTER)
OceanBioME.Models.LOBSTERModel — ModuleThe Lodyc-DAMTP Ocean Biogeochemical Simulation Tools for Ecosystem and Resources (LOBSTER) model.
Tracers
- Nitrates: NO₃ (mmol N/m³)
- Ammonia: NH₄ (mmol N/m³)
- Phytoplankton: P (mmol N/m³)
- Zooplankton: Z (mmol N/m³)
- Small (slow sinking) particulate organic matter: sPOM (mmol N/m³)
- Large (fast sinking) particulate organic matter: bPOM (mmol N/m³)
- Dissolved organic matter: DOM (mmol N/m³)
Optional tracers
Carbonate chemistry
- Dissolved inorganic carbon: DIC (mmol C/m³)
- Alkalinity: Alk (meq/m³)
Oxygen chemistry
- Oxygen: O₂ (mmol O₂/m³)
Variable redfield
- Small (slow sinking) particulate organic matter carbon content: sPOC (mmol C/m³)
- Large (fast sinking) particulate organic matter carbon content: bPOC (mmol C/m³)
- Dissolved organic matter carbon content: DOC (mmol C/m³)
- When this option is enabled then the usual sPOM and bPOM change to sPON and bPON as they explicitly represent the nitrogen contained in the particulate matter
Required submodels
- Photosynthetically available radiation: PAR (W/m²)
For optional tracers:
- Temperature: T (ᵒC)
- Salinity: S (‰)
OceanBioME.Models.LOBSTERModel.LOBSTER — MethodLOBSTER(; grid::AbstractGrid{FT},
phytoplankton_preference::FT = 0.5,
maximum_grazing_rate::FT = 9.26e-6, # 1/s
grazing_half_saturation::FT = 1.0, # mmol N/m³
light_half_saturation::FT = 33.0, # W/m² (?)
nitrate_ammonia_inhibition::FT = 3.0,
nitrate_half_saturation::FT = 0.7, # mmol N/m³
ammonia_half_saturation::FT = 0.001, # mmol N/m³
maximum_phytoplankton_growthrate::FT = 1.21e-5, # 1/s
zooplankton_assimilation_fraction::FT = 0.7,
zooplankton_mortality::FT = 2.31e-6, # 1/s/mmol N/m³
zooplankton_excretion_rate::FT = 5.8e-7, # 1/s
phytoplankton_mortality::FT = 5.8e-7, # 1/s
small_detritus_remineralisation_rate::FT = 5.88e-7, # 1/s
large_detritus_remineralisation_rate::FT = 5.88e-7, # 1/s
phytoplankton_exudation_fraction::FT = 0.05,
nitrification_rate::FT = 5.8e-7, # 1/s
ammonia_fraction_of_exudate::FT = 0.75,
ammonia_fraction_of_excriment::FT = 0.5,
ammonia_fraction_of_detritus::FT = 0.0,
phytoplankton_redfield::FT = 6.56, # mol C/mol N
organic_redfield::FT = 6.56, # mol C/mol N
phytoplankton_chlorophyll_ratio::FT = 1.31, # g Chl/mol N
organic_carbon_calcate_ratio::FT = 0.1, # mol CaCO₃/mol C
respiration_oxygen_nitrogen_ratio::FT = 10.75, # mol O/molN
nitrification_oxygen_nitrogen_ratio::FT = 2.0, # mol O/molN
slow_sinking_mortality_fraction::FT = 0.5,
fast_sinking_mortality_fraction::FT = 0.5,
dissolved_organic_breakdown_rate::FT = 3.86e-7, # 1/s
zooplankton_calcite_dissolution::FT = 0.3,
surface_photosynthetically_active_radiation = default_surface_PAR,
light_attenuation_model::LA =
TwoBandPhotosyntheticallyActiveRadiation(; grid,
surface_PAR = surface_photosynthetically_active_radiation),
sediment_model::S = nothing,
carbonates::Bool = false,
oxygen::Bool = false,
variable_redfield::Bool = false,
sinking_speeds = (sPOM = 3.47e-5, bPOM = 200/day),
open_bottom::Bool = true,
scale_negatives = false,
particles::P = nothing,
modifiers::M = nothing)Construct an instance of the LOBSTER biogeochemical model.
Keyword Arguments
grid: (required) the geometry to build the model on, required to calculate sinkingphytoplankton_preference, ...,dissolved_organic_breakdown_rate: LOBSTER parameter valuessurface_photosynthetically_active_radiation: funciton (or array in the future) for the photosynthetically available radiation at the surface, should be shapef(x, y, t)light_attenuation_model: light attenuation model which integrated the attenuation of available lightsediment_model: slot forBiogeochemicalSedimentcarbonates,oxygen, andvariable_redfield: include models for carbonate chemistry and/or oxygen chemistry and/or variable redfield ratio dissolved and particulate organic mattersinking_speed: named tuple of constant sinking, of fields (i.e.ZFaceField(...)) for any tracers which sink (convention is that a sinking speed is positive, but a field will need to follow the usual down being negative)open_bottom: should the sinking velocity be smoothly brought to zero at the bottom to prevent the tracers leaving the domainscale_negatives: scale negative tracers?particles: slot forBiogeochemicalParticlesmodifiers: slot for components which modify the biogeochemistry when the tendencies have been calculated or when the state is updated
Example
julia> using OceanBioME
julia> using Oceananigans
julia> grid = RectilinearGrid(size=(3, 3, 30), extent=(10, 10, 200));
julia> model = LOBSTER(; grid)
LOBSTER{Float64} with carbonates ❌, oxygen ❌, variable Redfield ratio ❌ and (:sPOM, :bPOM) sinking
Light attenuation: Two-band light attenuation model (Float64)
Sediment: Nothing
Particles: Nothing
Modifiers: NothingPelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCES)
OceanBioME.Models.PISCESModel — ModulePelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCES) model.
This is not currently an official version supported by the PISCES community and is not yet verified to be capable of producing results mathcing that of the operational PISCES configuration. This is a work in progress, please open an issue or discusison if you'd like to know more.
Notes to developers
Part of the vision for this implementation of PISCES is to harness the features of Julia that would allow it to be fully modular. An obvious step to improve the ease of this would be to do some minor refactoring to group the phytoplankton classes, and zooplankton classes together, and for the other groups to generically call the whole lot. This may cause some issues with argument passing, and although it may not be the best way todo it my first thought is to pass them round as named tuples built from something like,
phytoplankton_tracers = phytoplankton_arguments(bgc.phytoplankton, args...)OceanBioME.Models.PISCESModel.DepthDependantSinkingSpeed — TypeDepthDependantSinkingSpeed(; minimum_speed = 30/day,
maximum_speed = 200/day,
maximum_depth = 500)Returns sinking speed for particles which sink at minimum_speed in the surface ocean (the deepest of the mixed and euphotic layers), and accelerate to maximum_speed below that depth and maximum_depth.
OceanBioME.Models.PISCESModel.ModelLatitude — TypeModelLatitudeReturns the latitude specified by the model grid (y).
OceanBioME.Models.PISCESModel.PISCES — MethodPISCES(; grid::AbstractGrid{FT},
phytoplankton = MixedMondoNanoAndDiatoms(),
zooplankton = MicroAndMesoZooplankton(),
dissolved_organic_matter = DissolvedOrganicCarbon(),
particulate_organic_matter = TwoCompartementCarbonIronParticles(),
nitrogen = NitrateAmmonia(),
iron = SimpleIron(),
silicate = Silicate(),
oxygen = Oxygen(),
phosphate = Phosphate(),
inorganic_carbon = InorganicCarbon(),
# from Aumount 2005 rather than 2015 since it doesn't work the other way around
first_anoxia_thresehold = 6.0,
second_anoxia_thresehold = 1.0,
nitrogen_redfield_ratio = 16/122,
phosphate_redfield_ratio = 1/122,
mixed_layer_shear = 1.0,
background_shear = 0.01,
latitude = PrescribedLatitude(45),
day_length = day_length_function,
mixed_layer_depth = Field{Center, Center, Nothing}(grid),
euphotic_depth = Field{Center, Center, Nothing}(grid),
silicate_climatology = ConstantField(7.5),
mean_mixed_layer_vertical_diffusivity = Field{Center, Center, Nothing}(grid),
mean_mixed_layer_light = Field{Center, Center, Nothing}(grid),
carbon_chemistry = CarbonChemistry(),
calcite_saturation = CenterField(grid),
surface_photosynthetically_active_radiation = default_surface_PAR,
light_attenuation =
MultiBandPhotosyntheticallyActiveRadiation(; grid,
surface_PAR = surface_photosynthetically_active_radiation),
sinking_speeds = (POC = 2/day,
# might be more efficient to just precompute this
GOC = Field(KernelFunctionOperation{Center, Center, Face}(DepthDependantSinkingSpeed(),
grid,
mixed_layer_depth,
euphotic_depth))),
open_bottom = true,
scale_negatives = false,
invalid_fill_value = NaN,
sediment = nothing,
particles = nothing,
modifiers = nothing)Constructs an instance of the PISCES biogeochemical model.
Keyword Arguments
grid: (required) the geometry to build the model onphytoplankton: phytoplankton evolution parameterisation, defaults to nanophyto and diatom size classes withMixedMondogrowthzooplankton: zooplankton evolution parameterisation, defaults to two classZandMdissolved_organic_matter: parameterisaion for the evolution of dissolved organic matter (DOC)particulate_organic_matter: parameterisation for the evolution of particulate organic matter (POC,GOC,SFe,BFe,PSi,CaCO₃)nitrogen: parameterisation for the nitrogen compartements (NH₄andNO₃)iron: parameterisation for iron (Fe), currently the "complex chemistry" of Aumount 2015 is not implementedsilicate: parameterisaion for silicate (Si)oxygen: parameterisaion for oxygen (O₂)phosphate: parameterisaion for phosphate (PO₄)inorganic_carbon: parameterisation for the evolution of the inorganic carbon system (DICandAlkalinity)first_anoxia_threseholdandsecond_anoxia_thresehold: thresholds in anoxia parameterisationnitrogen_redfield_ratioandphosphate_redfield_ratio: the assumed element ratios N/C and P/Cmixed_layer_shearandbackground_shear: the mixed layer and background shear rates, TODO: move this to a computed fieldlatitude: model latitude, should bePrescribedLatitudeforRectilinearGrids andModelLatitudefor grids providing their own latitudeday_length: parameterisation for day length based on time of year and latitude, you may wish to change this to (φ, t) -> 1day if you want to ignore the effect of day length, or something else if you're modelling a differen planetmixed_layer_depth: anAbstractFieldcontaining the mixed layer depth (to be computed during update state)euphotic: anAbstractFieldcontaining the euphotic depth, the depth where light reduces to 1/1000 of the surface value (computed during update state)silicate_climatology: anAbstractFieldcontaining the silicate climatology which effects the diatoms silicate half saturation constantmean_mixed_layer_vertical_diffusivity: anAbstractFieldcontaining the mean mixed layer vertical diffusivity (to be computed during update state)mean_mixed_layer_light: anAbstractFieldcontaining the mean mixed layer light (computed during update state)carbon_chemistry: theCarbonChemistrymodel used to compute the calicte saturationcalcite_saturation: anAbstractFieldcontaining the calcite saturation (computed during update state)surface_photosynthetically_active_radiation: funciton for the photosynthetically available radiation at the surfacelight_attenuation_model: light attenuation model which integrated the attenuation of available lightsinking_speed: named tuple of constant sinking speeds, or fields (i.e.ZFaceField(...)) for any tracers which sink (convention is that a sinking speed is positive, but a field will need to follow the usual down being negative)open_bottom: should the sinking velocity be smoothly brought to zero at the bottom to prevent the tracers leaving the domainscale_negatives: scale negative tracers?particles: slot forBiogeochemicalParticlesmodifiers: slot for components which modify the biogeochemistry when the tendencies have been calculated or when the state is updated
All parameterisations default to the operaitonal version of PISCES as close as possible.
Notes
Currently only MixedMondoPhytoplankton are implemented, and some work should be done to generalise the classes to a single phytoplankton if more classes are required (see OceanBioME.Models.PISCESModel docstring). Similarly, if a more generic particulate_organic_matter was desired a way to specify arbitary tracers for arguments would be required.
OceanBioME.Models.PISCESModel.PrescribedLatitude — TypePrescribedLatitudeReturns the prescribed latitude rather than the model grid y position.
OceanBioME.Models.PISCESModel.DissolvedOrganicMatter.DissolvedOrganicCarbon — TypeDissolvedOrganicCarbonParameterisation of dissolved organic matter which depends on a bacterial concentration.
OceanBioME.Models.PISCESModel.ParticulateOrganicMatter.TwoCompartementCarbonIronParticles — TypeTwoCompartementCarbonIronParticlesA quota parameterisation for particulate organic matter with two size classes, each with carbon and iron compartements, and a silicate compartement for the large size class.
Confusingly we decided to name these compartmenets POC and GOC for the small and large carbon classes, SFe and BFe for the small and ̶l̶a̶r̶g̶e̶ big iron compartements, and PSi for the ̶l̶a̶r̶g̶e̶ particulate silicon (not the phytoplankton silicon).
OceanBioME.Models.PISCESModel.Iron.SimpleIron — TypeSimpleIron(; excess_scavenging_enhancement = 1000)Parameterisation for iron evolution, not the "complex chemistry" model of Aumount et al, 2015. Iron is scavenged (i.e. perminemtly removed from the model) when the free iron concentration exeeds the ligand concentration at a rate modified by excess_scavenging_enhancement.
OceanBioME.Models.PISCESModel.InorganicCarbons.InorganicCarbon — TypeInorganicCarbonDefault parameterisation for DICandAlk`alinity evolution.
OceanBioME.Models.PISCESModel.Zooplankton.QualityDependantZooplankton — TypeQualityDependantZooplanktonThe PISCES zooplankton growth model where each class has preferences for grazing on nanophytoplankton (P), diatoms (D), microzooplankton (Z), and particulate organic matter (POC), and can flux feed on sinking particulates (POC and GOC).
This model assumes a fixed ratio for all other elements (i.e. N, P, Fe).
OceanBioME.Models.PISCESModel.Phytoplankton.GrowthRespirationLimitedProduction — TypeNutrientLimitedProductionBaseProduction with light limitation moderated by nutrient availability. This is the "new production" PISCES phytoplankton growth rate model. Growth rate is of the form:
\[μ = μ₁f₁(τ)f₂(zₘₓₗ)(1-exp(-α θᶜʰˡ PAR / τ (bᵣ + μᵣ))) L.\]
Keyword Arguments
base_growth_rate: the base growth rate, μ₀, in (1/s)temperatrue_sensetivity: temperature sensetivity parameter, b, giving μ₁ = μ₀ bᵀ where T is temperaturedark_tollerance: the time that the phytoplankton survives in darkness below the euphotic layer, τᵈ (s)initial_slope_of_PI_curve: the relationship between photosynthesis and irradiance, α₀ (1/W/m²)low_light_adaptation: factor increasing the sensetivity of photosynthesis to irradiance, β, giving α = α₀(1 + exp(-PAR)), typically set to zerobasal_respiration_rate: reference respiration rate, bᵣ (1/s)reference_growth_rate: reference growth rate, μᵣ (1/s)
OceanBioME.Models.PISCESModel.Phytoplankton.MixedMondo — TypeMixedMondoHolds the parameters for the PISCES mixed mondo phytoplankton parameterisation where nutrient limitation is modelled using the mondo approach for nitrate (NO₃), ammonia (NH₄), phosphate (PO₄), and silicate (Si), but the quota approach is used for iron (Fe) and light (PAR).
Therefore each class has a carbon compartement (generically I), chlorophyll (IChl), and iron (IFe), and may also have silicate (ISi) if the nutrient_limitation specifies that the growth is silicate limited, despite the fact that the silicate still limits the growth in a mondo fashion.
The growth_rate may be different parameterisations, currently either NutrientLimitedProduction or GrowthRespirationLimitedProduction, which represent the typical and newprod versions of PISCES.
OceanBioME.Models.PISCESModel.Phytoplankton.NitrogenIronPhosphateSilicateLimitation — TypeNitrogenIronPhosphateSilicateLimitationHolds the parameters for growth limitation by nitrogen (NO₃ and NH₄), iron (Fe), phosphate PO₄, and (optionally) silicate (Si) availability.
Silicate limitation may be turned off (e.g. for nanophytoplankton) by setting silicate_limited=false.
OceanBioME.Models.PISCESModel.Phytoplankton.NutrientLimitedProduction — TypeNutrientLimitedProductionBaseProduction with light limitation moderated by nutrient availability. This is the "origional" PISCES phytoplankton growth rate model. Growth rate is of the form:
\[μ = μ₁f₁(τᵈ)f₂(zₘₓₗ)(1-exp(-α θᶜʰˡ PAR / τ μ₀ L)) L.\]
Keyword Arguments
base_growth_rate: the base growth rate, μ₀, in (1/s)temperatrue_sensetivity: temperature sensetivity parameter, b, giving μ₁ = μ₀ bᵀ where T is temperaturedark_tollerance: the time that the phytoplankton survives in darkness below the euphotic layer, τᵈ (s)initial_slope_of_PI_curve: the relationship between photosynthesis and irradiance, α₀ (1/W/m²)low_light_adaptation: factor increasing the sensetivity of photosynthesis to irradiance, β, giving α = α₀(1 + exp(-PAR)), typically set to zero
OceanBioME.Models.PISCESModel.Nitrogen.NitrateAmmonia — TypeNitrateAmmoniaA parameterisation for the evolution of nitrate (NO₃) and ammonia (NH₄) where ammonia can be nitrified into nitrate, nitrate and ammonia are supplied by the bacterial degredation of dissolved organic matter, and consumed by phytoplankton. Additionally waste produces ammonia through various means.
Sugar kelp (Saccharina latissima)
OceanBioME.Models.SugarKelpModel — ModuleSugar kelp model of Broch and Slagstad (2012) and updated by Broch et al. (2013), Fossberg et al. (2018), and Broch et al. (2019).
Prognostic properties
- Area: A (dm²)
- Nitrogen reserve: N (gN/gSW)
- Carbon reserve: C (gC/gSW)
Tracer dependencies
- Nitrates: NO₃ (mmol N/m³)
- Ammonia: NH₄ (mmol N/m³)
- Photosynthetically available radiation: PAR (einstein/m²/day)
- Temperature: T (°C)
OceanBioME.Models.SugarKelpModel.SugarKelp — TypeSugarKelpDefines the parameters for SugarKelp biogeochemistry.
OceanBioME.Models.SugarKelpModel.SugarKelpParticles — MethodSugarKelpParticles(n; grid, kelp_parameters = NamedTuple(), kwargs...)Sets up n sugar kelp BiogeochemicalParticles with default parameters except those specified in kelp_parameters. kwagrs are passed onto BiogeochemicalParticles.
Carbon Chemistry
OceanBioME.Models.CarbonChemistryModel — ModuleCarbonChemistryModel to solve chemical equilibrium parameterisations
OceanBioME.Models.CarbonChemistryModel.CarbonChemistry — TypeCarbonChemistry(FT = Float64;
ionic_strength = IonicStrength(),
solubility = K0(),
carbonic_acid = (K1 = K1(), K2 = K2()),
boric_acid = KB(),
water = KW(),
sulfate = KS(; ionic_strength),
fluoride = KF(; ionic_strength),
phosphoric_acid = (KP1 = KP1(), KP2 = KP2(), KP3 = KP3()),
silicic_acid = KSi(; ionic_strength),
calcite_solubility = KSP_calcite(),
density_function = teos10_polynomial_approximation)Carbon chemistry model capable of solving for sea water pCO₂ from DIC and total alkalinity or DIC and pH.
Default form from Dickson, A.G., Sabine, C.L. and Christian, J.R. (2007), Guide to Best Practices for Ocean CO 2 Measurements. PICES Special Publication 3, 191 pp.
See each parameters documentation for origional sources.
Example
julia> using OceanBioME
julia> carbon_chemistry = CarbonChemistry()
`CarbonChemistry` model which solves for pCO₂ and pH
julia> pCO₂ = carbon_chemistry(; DIC = 2000, Alk = 2000, T = 10, S = 35)
1308.0843992121615
julia> pH = carbon_chemistry(; DIC = 2000, Alk = 2000, T = 10, S = 35, return_pH = true)
7.502534641304366
julia> pCO₂_higher_pH = carbon_chemistry(; DIC = 2000, T = 10, S = 35, pH = 7.5)
1315.6558976217746
OceanBioME.Models.CarbonChemistryModel.CarbonChemistry — Method(p::CarbonChemistry)(; DIC, T, S, Alk = 0, pH = nothing,
return_pH = false,
boron = 0.000232 / 10.811 * S / 1.80655,
sulfate = 0.14 / 96.06 * S / 1.80655,
fluoride = 0.000067 / 18.9984 * S / 1.80655,
silicate = 0,
phosphate = 0,
upper_pH_bound = 14,
lower_pH_bound = 0)Calculates fCO₂ in sea water with DIC, Alkalinity, Temperature, and Salinity unless pH is specified, in which case intermediate computation of pH is skipped and pCO₂ is calculated from the DIC, T, S and pH.
Alternativly, pH is returned if return_pH is true.
OceanBioME.Models.CarbonChemistryModel.IonicStrength — TypeIonicStrength(; a = 19.924,
b = 1000.0,
c = -1.005)Parameterisation of the ionic strength of sea water.
Is(S) = aS / (b + cS)Default values from Dickson (1990, Chem. Thermodyn., 22, 113–127).
OceanBioME.Models.CarbonChemistryModel.K0 — TypeK0(; constant = -60.2409,
inverse_T = 93.4517 * 100,
log_T = 23.3585,
T² = 0.0,
S = 0.023517,
ST = -0.023656 / 100,
ST² = 0.0047036 / 100^2)Parameterisation for carbon dioxide solubility equilibrium constant.
CO₂(g) ⇌ CO₂*(aq)
K₀ = [CO₂*(aq)]/f(CO₂)Default values from Weiss, R.F. (1974, Mar. Chem., 2, 203–215).
OceanBioME.Models.CarbonChemistryModel.K1 — TypeK1(FT = Float64;
constant = 61.2172,
inverse_T = -3633.86,
log_T = -9.67770,
S = 0.011555,
S² = -0.0001152,
pressure_correction = PressureCorrection(FT; a₀=-25.50, a₁=0.1271, a₂=0.0, b₀=-0.00308, b₁=0.0000877))Parameterisation for aquious carbon dioxide - bicarbonate dissociation equilibrium constant.
CO₂*(aq) + H₂O ⇌ H₂CO₃ ⇌ HCO₃⁻ + H⁺
K₁ = [H⁺][HCO₃⁻]/[CO₂*]Default values from Lueker et al. (2000, Mar. Chem., 70: 105–119).
OceanBioME.Models.CarbonChemistryModel.K2 — TypeK2(FT = Float64;
constant = -25.9290,
inverse_T = -471.78,
log_T = 3.16967,
S = 0.01781,
S² = -0.0001122,
pressure_correction = PressureCorrection(FT; a₀=-15.82, a₁=-0.0219, a₂=0.0, b₀=0.00113, b₁=-0.0001475))Parameterisation for bicarbonate dissociation equilibrium constant.
HCO₃⁻ ⇌ CO₃²⁻ + H⁺
K₂ = [H⁺][CO₃²⁻]/[HCO₃⁻]Default values from Lueker et al. (2000, Mar. Chem., 70: 105–119).
OceanBioME.Models.CarbonChemistryModel.KB — TypeKB(FT = Float64;
constant = 148.0248,
inverse_T = -8966.90,
inverse_T_sqrt_S = -2890.53,
inverse_T_S = -77.942,
inverse_T_sqrt_S³ = 1.728,
inverse_T_S² = -0.0996,
sqrt_S = 137.1942,
S = 1.62142,
log_T = -24.4344,
log_T_sqrt_S = -25.085,
S_log_T = -0.2474,
T_sqrt_S = 0.053105,
pressure_correction = PressureCorrection(FT; a₀=-29.48, a₁=0.1622, a₂=-0.0026080, b₀=-0.00284, b₁=0.0))Parameterisation for boric acid equilibrium with water.
B(OH)₃ + H₂O ⇌ B(OH)₄⁻ + H⁺
Kᵇ = [H⁺][B(OH)₄⁻]/[B(OH)₃]Default values from Dickson (1990, Deep-Sea Res., 37, 755–766).
OceanBioME.Models.CarbonChemistryModel.KF — TypeKF(; ionic_strength = IonicStrength(),
sulfate_constant = KS(; ionic_strength),
constant = -9.68,
inverse_T = 874.0,
sqrt_S = 0.111,
log_S = 0.0,
log_S_KS = 0.0,
pressure_correction =
PressureCorrection(; a₀=-9.78, a₁=-0.0090, a₂=-0.000942, b₀=-0.00391, b₁=0.000054))Parameterisation for hydrogen fluoride dissociation equilibrium constant.
HF ⇌ F⁻ + H⁺
Kᶠ = [H⁺][F⁻]/[HF]Default values from Perez and Fraga (1987, Mar. Chem., 21, 161–168).
OceanBioME.Models.CarbonChemistryModel.KP — TypeKP(constant,
inverse_T,
log_T,
sqrt_S,
inverse_T_sqrt_S,
S,
inverse_T_S,
pressure_correction)Generic equilibrium constant parameterisation of the form used by Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677) for phosphoric acid dissociation.
OceanBioME.Models.CarbonChemistryModel.KS — TypeKS(; constant = 148.9652,
inverse_T = -13847.26,
log_T = -23.6521,
sqrt_S = -5.977,
inverse_T_sqrt_S = 118.67,
log_T_sqrt_S = 1.0495,
S = -0.01615,
pressure_correction =
PressureCorrection(; a₀=-18.03, a₁=0.0466, a₂=0.000316, b₀=-0.00453, b₁=0.00009))Parameterisation for bisulfate dissociation equilibrium constant.
HSO₄⁻ ⇌ SO₄²⁻ + H⁺
Kˢ = [H⁺][SO₄²⁻]/[HSO₄⁻]Default values from Dickson (1990, Chem. Thermodyn., 22, 113–127).
OceanBioME.Models.CarbonChemistryModel.KSP — TypeKSP(therm_constant,
therm_T,
therm_inverse_T,
therm_log_T,
sea_sqrt_S,
sea_T_sqrt_S,
sea_inverse_T_sqrt_S,
sea_S,
sea_S_sqrt_S³,
pressure_correction)Generic CaCO₃ solubility parameterisation of the form given by Form from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).
OceanBioME.Models.CarbonChemistryModel.KSi — TypeKSi(; ionic_strength = IonicStrength(),
constant = 117.385,
inverse_T = -8904.2,
log_T = -19.334,
sqrt_Is = 3.5913,
inverse_T_sqrt_Is = -458.79,
Is = -1.5998,
inverse_T_Is = 188.74,
Is² = 0.07871,
inverse_T_Is² = -12.1652,
log_S = -0.001005)Parameterisation for silicic acid dissociation equilibrium constant.
Si(OH)₄ ⇌ SiO(OH)₃⁻ + H⁺
Kʷ = [H⁺][SiO(OH)₃⁻]/[Si(OH)₄]Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).
OceanBioME.Models.CarbonChemistryModel.KW — TypeKW(; constant = 148.9652,
inverse_T = -13847.26,
log_T = -23.6521,
sqrt_S = -5.977,
inverse_T_sqrt_S = 118.67,
log_T_sqrt_S = 1.0495,
S = -0.01615,
pressure_correction =
PressureCorrection(; a₀=-20.02, a₁=0.1119, a₂=-0.001409, b₀=-0.00513, b₁=0.0000794))Parameterisation for water dissociation equilibrium constant.
H₂O ⇌ OH⁻ + H⁺
Kʷ = [H⁺][OH⁻]Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).
OceanBioME.Models.CarbonChemistryModel.PressureCorrection — TypePressureCorrection(FT=Float64;
a₀, a₁, a₂,
b₀, b₁, b₂,
R = 83.14472)Parameterisation for the pressure effect on thermodynamic constants.
Form from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).
OceanBioME.Models.CarbonChemistryModel.KP1 — MethodKP1(; constant = 115.525,
inverse_T = -4576.752,
log_T = - 18.453,
sqrt_S = 0.69171,
inverse_T_sqrt_S = -106.736,
S = -0.01844,
inverse_T_S = -0.65643,
pressure_correction =
PressureCorrection(; a₀=-14.51, a₁=0.1211, a₂=-0.000321, b₀=-0.00267, b₁=0.0000427))Instance of KP returning the first phosphocic acid equilibrium constant.
H₃PO₄ ⇌ H₂PO₄⁻ + H⁺
Kᵖ¹ = [H⁺][H₂PO₄]/[H₃PO₄]Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).
OceanBioME.Models.CarbonChemistryModel.KP2 — MethodKP2(; constant = 172.0883,
inverse_T = -8814.715,
log_T = -27.927,
sqrt_S = 1.3566,
inverse_T_sqrt_S = -160.340,
S = -0.05778,
inverse_T_S = 0.37335,
pressure_correction =
PressureCorrection(; a₀=-23.12, a₁=0.1758, a₂=-0.002647, b₀=-0.00515, b₁=0.00009))Instance of KP returning the second phosphocic acid equilibrium constant.
H₂PO₄⁻ ⇌ HPO₄²⁻ + H⁺
Kᵖ² = [H⁺][HPO₄²⁻]/[H₂PO₄⁻]Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).
OceanBioME.Models.CarbonChemistryModel.KP3 — MethodKP3(; constant = -18.141,
inverse_T = -3070.75,
log_T = 0.0,
sqrt_S = 2.81197,
inverse_T_sqrt_S = 17.27039,
S = -0.09984,
inverse_T_S = -44.99486,
pressure_correction =
PressureCorrection(; a₀=-26.57, a₁=0.2020, a₂=-0.0030420, b₀=-0.00408, b₁=0.0000714))Instance of KP returning the third phosphocic acid equilibrium constant.
HPO₄²⁻ ⇌ PO₄ + H⁺
Kᵖ³ = [H⁺][PO₄³⁻]/[HPO₄⁻]Default values from Millero (1995, Geochim. Cosmochim. Acta, 59, 661–677).
OceanBioME.Models.CarbonChemistryModel.KSP_aragonite — MethodKSParagonite(; thermconstant = -171.945, thermT = -0.077993, therminverseT = 2903.293, thermlogT = 71.595, seasqrtS = -0.068393, seaTsqrtS = 0.0017276, seainverseTsqrtS = 88.135, seaS = -0.10018, seaSsqrtS³ = 0.0059415, pressure_correction = PressureCorrection(; a₀=-45.96, a₁=0.5304, a₂=-0.0, b₀=-0.01176, b₁=0.0003692))
Instance of KSP returning calcite solubility.
Default values from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).
OceanBioME.Models.CarbonChemistryModel.KSP_calcite — MethodKSP_calcite(; therm_constant = -171.9065,
therm_T = -0.077993,
therm_inverse_T = 2839.319,
therm_log_T = 71.595,
sea_sqrt_S = -0.77712,
sea_T_sqrt_S = 0.0028426,
sea_inverse_T_sqrt_S = 178.34,
sea_S = -0.07711,
sea_S_sqrt_S³ = 0.0041249,
pressure_correction =
PressureCorrection(; a₀=-48.76, a₁=0.5304, a₂=-0.0, b₀=-0.01176, b₁=0.0003692))Instance of KSP returning calcite solubility.
Default values from Millero, F. J. (2007, Chemical Reviews, 107(2), 308–341).
OceanBioME.Models.CarbonChemistryModel.alkalinity_residual — Methodalkalinity_residual(H, p)Returns the difference between total alkalinity computed from H(hydrogen ion concentration),DIC,borate,sulfate,phosphate,silicate, andfluorideconcentration and chemical equilibrium constants specified inp, and the specified totalAlk`alinity.
TAlk = [HCO₃⁻] + 2[CO₃²⁻] + [B(OH)₄⁻] + [OH⁻] + [HPO₄²⁻] + 2[PO₄³⁻] + [SiO(OH)₃⁻]
+ [NH₃] + [HS⁻] - [H⁺] - [HSO₄⁻] - [HF] - [H₃PO₄] + minor acids and basesConcentrations diagnosed as specified in Dickson et. al best practice descried in CarbonChemistry docstring.
Note ammonia (NH₃) is not currently included.
Light Attenuation Models
OceanBioME.Light — ModuleLight attenuation by chlorophyll as described by Karleskind et al. (2011) (implemented as TwoBand) and Morel (1988) (as MultiBand).
OceanBioME.Light.MultiBandPhotosyntheticallyActiveRadiation — TypeMultiBandPhotosyntheticallyActiveRadiation{F, FN, K, E, C, SPAR, SPARD}Light attenuation model with multiple wave length bands where each band (i) is attenuated like:
∂PARᵢ(z)/∂z = PARᵢ(kʷ(i) + χ(i)Chl(z)ᵉ⁽ⁱ⁾)Where kʷ(i) is the band specific water attenuation coefficient, e(i) the chlorophyll exponent, and χ(i) the chlorophyll attenuation coefficient.
When the fields are called with biogeochemical_auxiliary_fields an additional field named PAR is also returned which is a sum of the bands.
OceanBioME.Light.MultiBandPhotosyntheticallyActiveRadiation — MethodMultiBandPhotosyntheticallyActiveRadiation(; grid::AbstractGrid{FT},
bands = ((400, 500), (500, 600), (600, 700)), #nm
base_bands = MOREL_λ,
base_water_attenuation_coefficient = MOREL_kʷ,
base_chlorophyll_exponent = MOREL_e,
base_chlorophyll_attenuation_coefficient = MOREL_χ,
field_names = [par_symbol(n, length(bands)) for n in 1:length(bands)],
surface_PAR = default_surface_PAR)Returns a MultiBandPhotosyntheticallyActiveRadiation attenuation model of surface_PAR in divided into bands by surface_PAR_division.
The attenuation morelcoefficients are computed from `basewaterattenuationcoefficient,basechlorophyllexponent, andbasechlorophyllattenuationcoefficientwhich should be arrays of the coefficients atbasebands` wavelengths.
The returned field_names default to PAR₁, PAR₂, etc., but may be specified by the user instead.
Keyword Arguments
grid: grid for building the model onwater_red_attenuation, ...,phytoplankton_chlorophyll_ratio: parameter valuessurface_PAR: function (or array in the future) for the photosynthetically available radiation at the surface, which should bef(x, y, t)wherexandyare the native coordinates (i.e. meters for rectilinear grids and latitude/longitude as appropriate)
OceanBioME.Light.PrescribedPhotosyntheticallyActiveRadiation — TypePrescribedPhotosyntheticallyActiveRadiation(fields)PrescribedPhotosyntheticallyActiveRadiation returns "prescribed" PAR fields which are user specified, e.g. they may be FunctionFields or ConstantFields.
fields may either be an AbstractField or a NamedTuple of names and fields which will be returned in biogeochemical_auxiliary_fields, if only one field is present the field will be named PAR.
OceanBioME.Light.TwoBandPhotosyntheticallyActiveRadiation — MethodTwoBandPhotosyntheticallyActiveRadiation(; grid::AbstractGrid{FT},
water_red_attenuation::FT = 0.225, # 1/m
water_blue_attenuation::FT = 0.0232, # 1/m
chlorophyll_red_attenuation::FT = 0.037, # 1/(m * (mgChl/m³) ^ eʳ)
chlorophyll_blue_attenuation::FT = 0.074, # 1/(m * (mgChl/m³) ^ eᵇ)
chlorophyll_red_exponent::FT = 0.629,
chlorophyll_blue_exponent::FT = 0.674,
pigment_ratio::FT = 0.7,
phytoplankton_chlorophyll_ratio::FT = 1.31,
surface_PAR::SPAR = default_surface_PAR)Keyword Arguments
grid: grid for building the model onwater_red_attenuation, ...,phytoplankton_chlorophyll_ratio: parameter valuessurface_PAR: function (or array in the future) for the photosynthetically available radiation at the surface, which should bef(x, y, t)wherexandyare the native coordinates (i.e. meters for rectilinear grids and latitude/longitude as appropriate)
Sediments
OceanBioME.Models.SedimentModels.InstantRemineralisation — TypeInstantRemineralisationHold the parameters and fields a simple sediment model where sinking organic carbon is "instantly remineralised" and either returned to the domain as remineralisation_reciever (typically NH₄), or permanently stored in the sediment.
The "burial efficiency" (the fraction permanently stored) is from Dunne et al. (2007), and varies with the sinking flux.
OceanBioME.Models.SedimentModels.SimpleMultiG — Typestruct SimpleMultiGHold the parameters and fields for a simple "multi G" single-layer sediment model. Based on the Level 3 model described by Soetaert et al. (2000).
OceanBioME.Models.SedimentModels.InstantRemineralisationSediment — MethodInstantRemineralisationSediment(grid;
sinking_tracers = (:P, :D),
remineralisation_reciever = :N,
burial_efficiency_constant1 = 0.013,
burial_efficiency_constant2 = 0.53,
burial_efficiency_half_saturation = 7.0 / 6.56,
kwargs...)Return a single-layer instant remineralisation sediment model where the sinking_tracers are instantly remineralised and returned to remineralisation_reciever with a small fraction permanently buried with efficiency:
e = a + b * f / (k + f)²
where a is burial_efficiency_constant1, b is burial_efficiency_constant2, and k is the burial_efficiency_half_saturation.
kwargs... are BiogeochemicalSediment key word arguments.
Example
using OceanBioME, Oceananigans
grid = RectilinearGrid(size=(3, 3, 30), extent=(10, 10, 200))
sediment_model = InstantRemineralisationSediment(grid)
biogeochemistry = NPZD(; grid, sediment_model)using OceanBioME, Oceananigans
grid = RectilinearGrid(size=(3, 3, 30), extent=(10, 10, 200))
sediment_model = InstantRemineralisationSediment(grid;
sinking_tracers = (:sPOM, :bPOM),
remineralisation_reciever = :NH₄)
biogeochemistry = LOBSTER(; grid, sediment_model)OceanBioME.Models.SedimentModels.SimpleMultiGSediment — MethodSimpleMultiGSediment(grid;
fast_decay_rate = 2/day,
slow_decay_rate = 0.2/day,
fast_redfield = 0.1509,
slow_redfield = 0.13,
fast_fraction = 0.74,
slow_fraction = 0.26,
refactory_fraction = 0.1,
sedimentation_rate = 982 * abs(znode(1, 1, 1, grid, Center(), Center(), Center())) ^ (-1.548), # cm/year, incorrect for D < 100m
anoxia_half_saturation = 1.0, # mmol/m³ (arbitarily low)
nitrate_oxidation_params = on_architecture(architecture(grid), (- 1.9785, 0.2261, -0.0615, -0.0289, - 0.36109, - 0.0232)),
denitrification_params = on_architecture(architecture(grid), (- 3.0790, 1.7509, 0.0593, - 0.1923, 0.0604, 0.0662)),
anoxic_params = on_architecture(architecture(grid), (- 3.9476, 2.6269, - 0.2426, -1.3349, 0.1826, - 0.0143)),
solid_dep_params = on_architecture(architecture(grid), (0.233, 0.336, 982.0, - 1.548)),
sinking_nitrogen = (:sPOM, :bPOM),
sinking_carbon = nothing,
sinking_redfield = ifelse(isnothing(sinking_carbon), convert(eltype(grid), 6.56), nothing),
kwargs...)Return a single-layer "multi G" sediment model (SimpleMultiG) on grid, where parameters can be optionally specified.
The model is a single layer (i.e. does not include porous diffusion) model with three classes of sediment organic matter which decay at three different rates (fast, slow, refactory). The nitrification/denitrification/anoxic mineralisation fractions default to the parameterisation of Soetaert et al. 2000; doi:10.1016/S0012-8252(00)00004-0.
This model has not yet been validated or compared to observational data. The variety of degridation processes is likely to be strongly dependent on oxygen availability (see https://bg.copernicus.org/articles/6/1273/2009/bg-6-1273-2009.pdf) so it will therefore be important to also thoroughly validate the oxygen model (also currently limited).
Example
julia> using OceanBioME, Oceananigans
julia> grid = RectilinearGrid(size=(3, 3, 30), extent=(10, 10, 200));
julia> sediment_model = SimpleMultiGSediment(grid)
`BiogeochemicalSediment` with `Single-layer multi-G sediment model (Float64)` biogeochemsitry
Prognostic fields: (:Ns, :Nf, :Nr)
Tracked fields: (:NO₃, :NH₄, :O₂, :sPOM, :bPOM)
Coupled fields: (:NO₃, :NH₄, :O₂)
julia> biogeochemistry = LOBSTER(; grid, sediment_model)
LOBSTER{Float64} with carbonates ❌, oxygen ❌, variable Redfield ratio ❌ and (:sPOM, :bPOM) sinking
Light attenuation: Two-band light attenuation model (Float64)
Sediment: `BiogeochemicalSediment` with `Single-layer multi-G sediment model (Float64)` biogeochemsitry
Particles: Nothing
Modifiers: Nothing
Gas exchange boundary conditions
OceanBioME.Models.GasExchangeModel — ModuleGasExchangeModel to solve chemical equilibrium parameterisations
OceanBioME.Models.GasExchangeModel.CarbonDioxideConcentration — TypeCarbonDioxideConcentration(; carbon_chemistry,
first_virial_coefficient = PolynomialVirialCoefficientForCarbonDioxide(),
cross_viral_coefficient = CrossVirialCoefficientForCarbonDioxide(),
air_pressue = 1 # atm)Converts fCO₂ to partial pressure as per Dickson, A.G., Sabine, C.L. and Christian, J.R. (2007), Guide to Best Practices for Ocean CO 2 Measurements. PICES Special Publication 3, 191 pp.
OceanBioME.Models.GasExchangeModel.GasExchange — TypeGasExchangeGasExchange returns the air-sea flux of a gas betwen water_concentration and air_concentration with a transfer_velocity computed from the temperature (provided later), and the wind_speed.
transfer_velocity should behave as a function of wind speed and temperature (i.e. k(u, T)), water_concentration a function of c(x, y, t, T, field_dependencies...).
water_concentration, air_concentration and wind_speed can either be numbers, functions of the form (x, y, t), functions of the form (i, j, grid, clock, model_fields) if discrete_form is set to true, or any kind of Field.
water_concentration should usually be a [Tracer]Concentration where is the name of the tracer (you will have to build your own if this is not OxygenConcentration), or a CarbonDioxideConcentration which diagnoses the partial pressure of CO₂ in the water.
OceanBioME.Models.GasExchangeModel.PartiallySolubleGas — TypePartiallySolubleGas(; air_concentration, solubility)Parameterises the available concentration of a gas dissolving in water in the form $\alpha C_a$ where $lpha$ is the Ostwald solubility coeffieient and $C_a$ is the concentration in the air.
OceanBioME.Models.GasExchangeModel.Wanninkhof92Solubility — TypeWanninkhof92SolubilityParameterises the Ostwald solubility coefficient as given in Wanninkhof, 1992.
OceanBioME.Models.GasExchangeModel.CarbonDioxideGasExchangeBoundaryCondition — FunctionCarbonDioxideGasExchangeBoundaryCondition(FT = Float64;
carbon_chemistry = CarbonChemistry(FT),
transfer_velocity = SchmidtScaledTransferVelocity(schmidt_number = CarbonDioxidePolynomialSchmidtNumber(FT)),
air_concentration = 413, # ppmv
wind_speed = 2,
water_concentration = nothing,
silicate_and_phosphate_names = nothing,
kwargs...)Returns a FluxBoundaryCondition for the gas exchange between carbon dioxide dissolved in the water specified by the carbon_chemisty model, and air_concentration with transfer_velocity (see GasExchangeBoundaryCondition for details).
silicate_and_phosphate_names should either be nothing, a Tupleof symbols specifying the name of the silicate and phosphate tracers, or aNamedTupleof values for thecarbon_chemistry` model.
kwargs are passed on to GasExchangeBoundaryCondition.
Note: The model always requires T, S, DIC, and Alk to be present in the model.
OceanBioME.Models.GasExchangeModel.CarbonDioxidePolynomialSchmidtNumber — FunctionCarbonDioxidePolynomialSchmidtNumber(FT = Float64; a = 2116.8, b = -136.25, c = 4.7353, d = -0.092307, e = 0.0007555)Schmidt number parameterisation Wanninkhof, 2014 for sea water
OceanBioME.Models.GasExchangeModel.GasExchangeBoundaryCondition — FunctionGasExchangeBoundaryCondition(; water_concentration,
air_concentration,
transfer_velocity,
wind_speed)Returns a FluxBoundaryCondition for the gas exchange between water_concentration and air_concentration with transfer_velocity.
water_concentration, air_concentration and wind_speed can either be numbers, functions of the form (x, y, t), functions of the form (i, j, grid, clock, model_fields) if discrete_form is set to true, or any kind of Field.
water_concentration should usually be a [Tracer]Concentration where is the name of the tracer (you will have to build your own if this is not OxygenConcentration), or a CarbonDioxideConcentration which diagnoses the partial pressure of CO₂ in the water.
transfer_velocity should be a function of the form k(u₁₀, T).
OceanBioME.Models.GasExchangeModel.OxygenGasExchangeBoundaryCondition — FunctionOxygenGasExchangeBoundaryCondition(FT = Float64;
transfer_velocity = SchmidtScaledTransferVelocity(schmidt_number = OxygenPolynomialSchmidtNumber(FT)),
water_concentration = OxygenConcentration(),
air_concentration = 9352.7, # mmolO₂/m³
wind_speed = 2,
kwagrs...)Returns a FluxBoundaryCondition for the gas exchange between oxygen dissolved in the water specified by the the OxygenConcentration in the base model, and air_concentration with transfer_velocity (see GasExchangeBoundaryCondition for details).
kwargs are passed on to GasExchangeBoundaryCondition.
OceanBioME.Models.GasExchangeModel.OxygenPolynomialSchmidtNumber — FunctionOxygenPolynomialSchmidtNumber(FT = Float64; a = 1953.4, b = - 128.0, c = 3.9918, d = -0.050091)Schmidt number parameterisation Wanninkhof, 2014 for sea water
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.SchmidtScaledTransferVelocity — TypeSchmidtScaledTransferVelocity(; schmidt_number,
base_transfer_velocity = Ho06())Returns a model for gas transfer velocity which depends on the u₁₀, the 10m-wind, and Temperature. The model is of the typical form:
k(u₁₀, T) = k₆₆₀(u₁₀) √(660/Sc(T))The base_transfer_velocity (k₆₆₀) is typically an empirically derived gas transfer velocity normalised by the Scmidt number for CO₂ at 20°C (660), and the schmidt_number (Sc) is a parameterisation of the gas specific Schmidt number.
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.CCMP2 — FunctionCCMP2(FT = Float64; scale_factor = 0.256789 / hour / 100)Quadratic k₆₆₀ parameterisation calibrated to give 16.5 cm/hr global average (reccomended Naegler, 2009) for the CCMP2 wind product by SeaFlux/Luke Gregor et al. (2023).
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.ERA5 — FunctionERA5(FT = Float64; scale_factor = 0.270875 / hour / 100)Quadratic k₆₆₀ parameterisation calibrated to give 16.5 cm/hr global average (reccomended Naegler, 2009) for the ERA5 wind product by SeaFlux/Luke Gregor et al. (2023).
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Ho06 — FunctionHo06(FT = Float64; scale_factor = 0.266 / hour / 100)Quadratic k₆₆₀ parameterisation of Ho et al. (2006) suitable for the QuickSCAT satellite and short-term steady wind product.
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.JRA55 — FunctionJRA55(FT = Float64; scale_factor = 0.2601975 / hour / 100)Quadratic k₆₆₀ parameterisation calibrated to give 16.5 cm/hr global average (reccomended Naegler, 2009) for the JRA55 wind product by SeaFlux/Luke Gregor et al. (2023).
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.McGillis01 — FunctionMcGillis01(FT = Float64; constant = 3.3 / hour / 100, cubic = 0.026 / hour / 100)Cubic k₆₆₀ parameterisation of McGillis et al. (2001) suitable for short term, in situ wind products.
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.NCEP1 — FunctionNCEP1(FT = Float64; scale_factor = 0.2866424 / hour / 100)Quadratic k₆₆₀ parameterisation calibrated to give 16.5 cm/hr global average (reccomended Naegler, 2009) for the NCEP1 wind product by SeaFlux/Luke Gregor et al. (2023).
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Nightingale00 — FunctionNightingale00(FT = Float64; linear = 0.333 / hour / 100, quadratic = 0.222 / hour / 100)
Cubic k₆₆₀ parameterisation of Nightingale et al. (2000) suitable for short term, in situ wind products (?).
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Sweeny07 — FunctionSweeny07(FT = Float64; scale_factor = 0.27 / hour / 100)Quadratic k₆₆₀ parameterisation of Sweeny et al. (2007) suitable for the NCEP/NCAR reanalysis 1 product
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Wanninkhof09 — FunctionWanninkhof09(FT = Float64; constant = 3 / hour / 100, linear = 0.1 / hour / 100, quadratic = 0.064 / hour / 100, cubic = 0.011 / hour / 100)Cubic k₆₆₀ parameterisation of Wanninkhof et al (2009) suitable for the Cross-Calibrated Multi-Platform (CCMP) Winds product
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Wanninkhof14 — FunctionWanninkhof14(FT = Float64; scale_factor = 0.251 / hour / 100)Quadratic k₆₆₀ parameterisation of Wanninkhof et al (2014) suitable for the Cross-Calibrated Multi-Platform (CCMP) Winds product
OceanBioME.Models.GasExchangeModel.ScaledGasTransferVelocity.Wanninkhof99 — FunctionWanninkhof99(FT = Float64; scale_factor = 0.0283 / hour / 100)Cubic k₆₆₀ parameterisation of Wanninkhof & McGillis (1999) suitable for short term, in situ wind products.
Box Model
OceanBioME.BoxModels — ModuleIntegrate biogeochemical models on a single point
OceanBioME.BoxModels.BoxModel — MethodBoxModel(; biogeochemistry,
forcing = NamedTuple(),
timestepper = :RungeKutta3,
clock = Clock(; time = 0.0),
prescribed_tracers::PT = NamedTuple())Constructs a box model of a biogeochemistry model. Once this has been constructed you can set initial condiitons by set!(model, X=1.0...).
Keyword Arguments
biogeochemistry: (required) an OceanBioME biogeochemical model, most models must be passed agridwhich can be set to aBoxModelGridfor box modelsforcing: NamedTuple of additional forcing functions for the biogeochemical tracers to be integratedtimestepper: Timestepper to integrate modelclock: Oceananigans clock to keep track of timeprescribed_tracers: named tuple of tracer names and function (f(t)) prescribing tracer values
Oceananigans.Fields.set! — Methodset!(model::BoxModel; kwargs...)Set the values for a BoxModel
Arguments
model- the model to set the arguments for
Keyword Arguments
- variables and value pairs to set
Oceananigans.TimeSteppers.cache_previous_tendencies! — MethodStore previous source terms before updating them.
Particles
OceanBioME.Particles.BiogeochemicalParticles — MethodBiogeochemicalParticles(number;
grid,
biogeochemistry,
advection = LagrangianAdvection(),
timestepper = ForwardEuler,
field_interpolation = NearestPoint(),
scalefactors = ones(number))Creates number particles with biogeochemistry on grid, advected by advection which defaults to LagrangianAdvection (i.e. they comove with the water). The biogeochemistry is stepped by timestepper and tracer fields are interpolated by field_interpolation, which defaults to directly reading the nearest center point and taking up/depositing in the same.
Particles can also have a scalefactor which scales their tracer interaction (e.g. to mimic the particle representing multiple particles).
OceanBioME.Particles.ForwardEuler — TypeForwardEulerStep particle biogeochemistry with a ForwardEuler methods with Δt from the physical model substep.
OceanBioME.Particles.LagrangianAdvection — TypeLagrangianAdvectionSpecifies that particles should move in a purley lagrangian mannor.
OceanBioME.Particles.NearestPoint — TypeNearestPointSpecifies that tracer values should be taken from the nearst center point.